LL3DA 项目使用教程
2024-09-26 01:39:18作者:温艾琴Wonderful
1. 项目介绍
LL3DA 是一个大型语言 3D 助手,能够响应复杂 3D 环境中的视觉和文本交互。该项目在 CVPR 2024 中被接受,旨在通过点云作为直接输入,帮助大型多模态模型(LMM)更好地理解人类交互,并消除 3D 场景中的模糊性。LL3DA 在 3D 密集标注和 3D 问答任务中表现出色,超越了多种 3D 视觉语言模型。
2. 项目快速启动
环境设置
首先,确保你的环境满足以下要求:
- CUDA 11.6
- Python 3.8.16
安装必要的依赖包:
pip install h5py scipy cython plyfile 'trimesh>=2.35.39,<2.35.40' 'networkx>=2.2,<2.3' 'torch==1.13.1+cu116' 'transformers>=4.37.0'
然后,从源码构建 pointnet2 和加速的 giou:
cd third_party/pointnet2
python setup.py install
cd utils
python cython_compile.py build_ext --inplace
下载预训练嵌入
从 Hugging Face 下载预处理的 BERT 嵌入权重,并存储在 /bert-base-embedding 文件夹中。
数据准备
下载和准备 ScanNet 3D 数据
按照以下步骤下载 ScanNetV2 数据集:
cd data/scannet/
python batch_load_scannet_data.py
准备语言标注
下载并预处理 ScanRefer、Nr3D、ScanQA 和 3D-LLM 数据集,并组织文件结构如下:
/data/
ScanRefer/
ScanRefer_filtered_train.json
ScanRefer_filtered_train.txt
ScanRefer_filtered_val.json
ScanRefer_filtered_val.txt
Nr3D/
nr3d_train.json
nr3d_train.txt
nr3d_val.json
nr3d_val.txt
ScanQA/
ScanQA_v1.0_test_w_obj.json
ScanQA_v1.0_test_wo_obj.json
ScanQA_v1.0_train.json
ScanQA_v1.0_val.json
3D_LLM/
3d_llm_embodied_dialogue_filtered_train.json
3d_llm_embodied_dialogue_filtered_val.json
3d_llm_embodied_planning_filtered_train.json
3d_llm_embodied_planning_filtered_val.json
3d_llm_scene_description_train.json
3d_llm_scene_description_val.json
训练模型
使用以下命令训练 3D 通用模型:
bash scripts/opt-1.3b/train_generalist.sh
3. 应用案例和最佳实践
3D 密集标注
在 ScanRefer 和 Nr3D 数据集上进行微调:
bash scripts/opt-1.3b/tuning_scanrefer.sh
bash scripts/opt-1.3b/tuning_nr3d.sh
3D 问答
在 ScanQA 数据集上进行微调:
bash scripts/opt-1.3b/tuning_scanqa.sh
开放词汇对象检测
微调模型以预测边界框:
bash scripts/opt-1.3b/tuning_ovdet.sh
4. 典型生态项目
相关项目
- ScanNet: 一个大规模的 3D 室内场景数据集,用于训练和评估 3D 视觉模型。
- Hugging Face Transformers: 提供预训练的语言模型,如 BERT,用于文本处理。
- PointNet++: 一个用于处理点云数据的深度学习框架。
通过这些生态项目,LL3DA 能够更好地理解和处理复杂的 3D 环境,提供更强大的视觉和文本交互能力。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881