LL3DA 项目使用教程
2024-09-26 01:39:18作者:温艾琴Wonderful
1. 项目介绍
LL3DA 是一个大型语言 3D 助手,能够响应复杂 3D 环境中的视觉和文本交互。该项目在 CVPR 2024 中被接受,旨在通过点云作为直接输入,帮助大型多模态模型(LMM)更好地理解人类交互,并消除 3D 场景中的模糊性。LL3DA 在 3D 密集标注和 3D 问答任务中表现出色,超越了多种 3D 视觉语言模型。
2. 项目快速启动
环境设置
首先,确保你的环境满足以下要求:
- CUDA 11.6
- Python 3.8.16
安装必要的依赖包:
pip install h5py scipy cython plyfile 'trimesh>=2.35.39,<2.35.40' 'networkx>=2.2,<2.3' 'torch==1.13.1+cu116' 'transformers>=4.37.0'
然后,从源码构建 pointnet2 和加速的 giou:
cd third_party/pointnet2
python setup.py install
cd utils
python cython_compile.py build_ext --inplace
下载预训练嵌入
从 Hugging Face 下载预处理的 BERT 嵌入权重,并存储在 /bert-base-embedding 文件夹中。
数据准备
下载和准备 ScanNet 3D 数据
按照以下步骤下载 ScanNetV2 数据集:
cd data/scannet/
python batch_load_scannet_data.py
准备语言标注
下载并预处理 ScanRefer、Nr3D、ScanQA 和 3D-LLM 数据集,并组织文件结构如下:
/data/
ScanRefer/
ScanRefer_filtered_train.json
ScanRefer_filtered_train.txt
ScanRefer_filtered_val.json
ScanRefer_filtered_val.txt
Nr3D/
nr3d_train.json
nr3d_train.txt
nr3d_val.json
nr3d_val.txt
ScanQA/
ScanQA_v1.0_test_w_obj.json
ScanQA_v1.0_test_wo_obj.json
ScanQA_v1.0_train.json
ScanQA_v1.0_val.json
3D_LLM/
3d_llm_embodied_dialogue_filtered_train.json
3d_llm_embodied_dialogue_filtered_val.json
3d_llm_embodied_planning_filtered_train.json
3d_llm_embodied_planning_filtered_val.json
3d_llm_scene_description_train.json
3d_llm_scene_description_val.json
训练模型
使用以下命令训练 3D 通用模型:
bash scripts/opt-1.3b/train_generalist.sh
3. 应用案例和最佳实践
3D 密集标注
在 ScanRefer 和 Nr3D 数据集上进行微调:
bash scripts/opt-1.3b/tuning_scanrefer.sh
bash scripts/opt-1.3b/tuning_nr3d.sh
3D 问答
在 ScanQA 数据集上进行微调:
bash scripts/opt-1.3b/tuning_scanqa.sh
开放词汇对象检测
微调模型以预测边界框:
bash scripts/opt-1.3b/tuning_ovdet.sh
4. 典型生态项目
相关项目
- ScanNet: 一个大规模的 3D 室内场景数据集,用于训练和评估 3D 视觉模型。
- Hugging Face Transformers: 提供预训练的语言模型,如 BERT,用于文本处理。
- PointNet++: 一个用于处理点云数据的深度学习框架。
通过这些生态项目,LL3DA 能够更好地理解和处理复杂的 3D 环境,提供更强大的视觉和文本交互能力。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247