360-LLaMA-Factory 使用教程
2026-01-30 04:25:11作者:凤尚柏Louis
1. 项目介绍
360-LLaMA-Factory 是基于 LLaMA-Factory 的开源项目,它引入了序列并行性(Sequence Parallelism,简称 SP)技术。这种技术能够有效提升大型语言模型训练的性能,尤其是在处理长序列时。项目在保留 LLaMA-Factory 原有功能的基础上,通过最小的代码改动实现了序列并行性,具有高度的模块化,并经过了正确性验证。
2. 项目快速启动
在开始之前,请确保您的环境中已安装 Python 3.11。
新建 Python 环境
conda create -n 360-llama-factory python=3.11 -y
激活环境:
conda activate 360-llama-factory
克隆代码库
git clone https://github.com/Qihoo360/360-LLaMA-Factory.git
cd 360-LLaMA-Factory
安装依赖
pip install -e ".[torch,metrics,deepspeed]"
配置文件
在配置文件中设置 sequence_parallel_size 和 cutoff_len:
sequence_parallel_size: 4
cutoff_len: 128000
或者,在命令行中设置这些参数:
deepspeed --hostfile=8nodes.host src/train.py \
--sequence_parallel_size 4 \
--cutoff_len 128000 \
...
运行训练
使用 DeepSpeed 启动训练:
deepspeed --hostfile=8nodes.host src/train.py
3. 应用案例和最佳实践
以下是使用 360-LLaMA-Factory 的一些应用案例和最佳实践:
- 序列并行性训练:通过设置
sequence_parallel_size参数,可以在多个 GPU 上并行处理同一序列的数据,从而提高训练效率。 - 参数配置:合理设置
cutoff_len参数以确保数据能够被正确填充和处理。 - 性能优化:可以通过一些自定义的优化技巧(如注释
logtis = logits.float(),使用 liger kernel,DPO 预计算等)来进一步提升训练性能。
4. 典型生态项目
360-LLaMA-Factory 作为 LLaMA-Factory 的扩展,能够与其他相关项目配合使用,以下是一些典型的生态项目:
- ring-flash-attn:为序列并行性提供支持的关键依赖库。
- trl:Transformers 的扩展库,提供额外的训练和优化功能。
- deepspeed:用于加速模型训练的深度学习优化库。
通过上述介绍和教程,您可以开始使用 360-LLaMA-Factory 来提升您的语言模型训练效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
330
395
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
暂无简介
Dart
766
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
351