LLaMA-Factory项目中React微调的Loss计算机制解析
2025-05-02 04:35:07作者:裘晴惠Vivianne
在LLaMA-Factory项目中进行React(Reasoning and Acting)微调时,Loss计算机制是一个需要特别关注的技术细节。本文将深入剖析这一机制的工作原理和实现方式。
React微调的数据结构特点
React微调要求将数据集组织成对话模式,这种结构与传统单轮对话有所不同。典型的数据结构包含多轮交互,每轮通常由以下几部分组成:
- 用户输入(human部分):包含人类指令和工具返回的观察结果(observation)
- 模型响应(gpt部分):包含思考过程(thought)、采取的行动(action)、行动输入(action input)以及最终答案(answer)
这种多轮交互结构使得Loss计算需要考虑更多维度,而不仅仅是最终的输出结果。
Loss计算的核心机制
LLaMA-Factory项目实现了一个关键参数mask_history来控制Loss计算的范围:
-
mask_history=True:仅计算最后一轮模型响应的Loss
- 这种模式下,系统会忽略中间过程的思考和行为,专注于最终答案的优化
- 适用于更关注最终结果准确性的场景
-
mask_history=False:计算所有模型响应的Loss
- 会同时优化思考过程、行动选择和最终答案
- 适用于需要完整推理链路的应用场景
典型数据流示例
一个完整的React交互通常呈现如下结构:
[system] 系统提示
[user] 用户指令
[assistant] Thought... Action...
[observation] 工具返回结果
[assistant] Thought... Final Answer
在这种结构中,mask_history参数决定了是只计算最后一个[assistant]部分的Loss,还是计算所有[assistant]部分的Loss。
技术实现建议
对于开发者而言,选择适当的Loss计算模式需要考虑以下因素:
- 如果目标是优化最终答案的准确性,建议使用
mask_history=True - 如果需要模型展示完整的推理过程,则应选择
mask_history=False - 在资源有限的情况下,仅计算最终Loss可以减少计算开销
- 对于教育类或需要解释性的应用,完整计算各步骤Loss更为合适
理解这一机制有助于开发者在LLaMA-Factory项目中更有效地进行React微调,根据具体需求调整模型的学习重点,从而获得更好的微调效果。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
515
3.7 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
874
550
Ascend Extension for PyTorch
Python
317
362
暂无简介
Dart
759
182
React Native鸿蒙化仓库
JavaScript
300
347
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
156
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.31 K
734
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
110
128