LLaMA-Factory项目中React微调的Loss计算机制解析
2025-05-02 02:07:43作者:裘晴惠Vivianne
在LLaMA-Factory项目中进行React(Reasoning and Acting)微调时,Loss计算机制是一个需要特别关注的技术细节。本文将深入剖析这一机制的工作原理和实现方式。
React微调的数据结构特点
React微调要求将数据集组织成对话模式,这种结构与传统单轮对话有所不同。典型的数据结构包含多轮交互,每轮通常由以下几部分组成:
- 用户输入(human部分):包含人类指令和工具返回的观察结果(observation)
- 模型响应(gpt部分):包含思考过程(thought)、采取的行动(action)、行动输入(action input)以及最终答案(answer)
这种多轮交互结构使得Loss计算需要考虑更多维度,而不仅仅是最终的输出结果。
Loss计算的核心机制
LLaMA-Factory项目实现了一个关键参数mask_history来控制Loss计算的范围:
-
mask_history=True:仅计算最后一轮模型响应的Loss
- 这种模式下,系统会忽略中间过程的思考和行为,专注于最终答案的优化
- 适用于更关注最终结果准确性的场景
-
mask_history=False:计算所有模型响应的Loss
- 会同时优化思考过程、行动选择和最终答案
- 适用于需要完整推理链路的应用场景
典型数据流示例
一个完整的React交互通常呈现如下结构:
[system] 系统提示
[user] 用户指令
[assistant] Thought... Action...
[observation] 工具返回结果
[assistant] Thought... Final Answer
在这种结构中,mask_history参数决定了是只计算最后一个[assistant]部分的Loss,还是计算所有[assistant]部分的Loss。
技术实现建议
对于开发者而言,选择适当的Loss计算模式需要考虑以下因素:
- 如果目标是优化最终答案的准确性,建议使用
mask_history=True - 如果需要模型展示完整的推理过程,则应选择
mask_history=False - 在资源有限的情况下,仅计算最终Loss可以减少计算开销
- 对于教育类或需要解释性的应用,完整计算各步骤Loss更为合适
理解这一机制有助于开发者在LLaMA-Factory项目中更有效地进行React微调,根据具体需求调整模型的学习重点,从而获得更好的微调效果。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1