标题:探索与应用:利用语言模型实现极少量样本学习
2024-05-20 18:21:40作者:盛欣凯Ernestine
标题:探索与应用:利用语言模型实现极少量样本学习
项目介绍
Few-shot Learning With Language Models
是一个开放源代码项目,它实现了类似于GPT-3论文中描述的极少量(few-shot)"in-context" 学习方法。项目的核心理念是将几个训练示例放入自然语言“提示”中,然后利用大型语言模型进行预测。通过这个项目,你可以尝试GPT-3、GPT-2以及其他在HuggingFace Transformers库中的语言模型。
项目技术分析
这个项目基于PyTorch和HuggingFace的Transformer库构建,因此对GPU有一定需求,但只需要单个GPU即可运行(没有训练过程,所以资源需求相对较低)。如果你有OpenAI的GPT-3密钥,可以直接用于运行。它提供了一个统一的API来抽象不同模型的使用,并且支持对结果进行上下文校准,以提高预测准确性。
应用场景
该框架适用于各种任务,包括文本分类(如SST2、TREC等)、信息提取(如MIT电影类别、ATIS航空信息等)以及LAMA任务。只需更改配置参数,你就可以轻松地为自己的任务定制评估流程。
项目特点
- 广泛兼容性:除了GPT-3和GPT-2,还支持任何在HuggingFace Transformers库中的模型。
- 简单易用:提供清晰的数据加载机制和预定义的任务格式,便于添加新的数据集或任务类型。
- 高效实验:通过保存模型的输出,可以快速进行后处理分析,无需重复运行模型。
- 可扩展性:允许对决策制定过程进行修改,以适应不同的任务要求。
- 上下文校准:通过校准,即使在极少量样本的情况下也能提升预测性能。
安装和运行
创建一个新的anaconda环境并安装依赖:
conda create -n fewshot python=3.6
source activate fewshot
pip install -r requirements.txt
然后,你可以通过简单的命令行选项运行各种任务的实验:
# 文本分类任务
CUDA_VISIBLE_DEVICES=0 python run_classification.py ...
# 信息提取任务
CUDA_VISIBLE_DEVICES=0 python run_extraction.py ...
# LAMA任务
CUDA_VISIBLE_DEVICES=0 python run_lama.py ...
总的来说,Few-shot Learning With Language Models
提供了一种强大而灵活的方法,来挖掘大型语言模型在极少量样本情况下的潜力。无论是学术研究还是实际应用,这都是一个值得尝试的工具。如果对此项目感兴趣或者有任何贡献,可以通过GitHub上的pull requests或issues与开发者联系。
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
54
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27