探索未来学习的利器:EGNN for Few-shot Learning
在深度学习领域中,Few-shot Learning是一种极具挑战性的任务,它要求模型能够以极少量的样例进行高效学习并泛化到新类别。为此,我们向您推荐一个创新的开源项目——fewshot-egnn。这个项目源自CVPR2019的一篇论文,由KAIST和KaKaoBrain的研究者们提出,他们构建了一个名为“Edge-labeling Graph Neural Network”(EGNN)的框架,旨在提升Few-shot Learning的表现。
项目介绍
fewshot-egnn项目提供PyTorch实现,该实现基于图神经网络,但与传统的节点标签框架不同,它专注于预测边的标签而非节点的标签,这使得EGNN能直接利用类内相似性和类间差异性,从而逐步演化出清晰的聚类结构。此外,该项目支持变数量的分类任务,并能进行半监督学习,且易于扩展进行传播推理。
项目技术分析
EGNN的核心是其边缘标签的图神经网络架构,通过迭代更新边标签,有效利用了数据中的内在关系。相对于节点标签方法,EGNN更直接地表达了数据间的联系,使模型在低样本情况下也能学到更有意义的表示。此外,项目采用的是Episodic训练策略,以边缘标签损失函数优化参数,保证模型对未见过的低数据问题有良好的泛化能力。
应用场景
fewshot-egnn适合于各种图像分类任务,尤其在资源有限的情况下。无论是监督学习还是半监督学习,不论是在标准的5-way 1-shot或5-shot设置中,还是在不同数量类别的跨方式实验中,都有出色的表现。对于那些需要快速适应新类型数据的任务,例如视觉识别、自然语言理解等领域,EGNN都能发挥强大的潜力。
项目特点
- 新颖的边标签机制:EGNN以独特的视角重新定义了图神经网络在Few-shot Learning中的应用。
- 出色的性能:在多个基准数据集上,EGNN在多轮实验中表现出优于现有方法的性能。
- 灵活性:支持不同数量的类别,无需重训练即可适应变化,易于进行传播推理。
- 可复现性:项目提供了详细的训练和评估脚本,以及预训练模型,方便研究者验证和进一步开发。
总之,fewshot-egnn是一个值得尝试的前沿技术,它的创新思路和优秀表现将为您的 Few-shot Learning 实验室增添新的可能。立即加入,一起探索深度学习的无限潜能吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00