探索未来学习的利器:EGNN for Few-shot Learning
在深度学习领域中,Few-shot Learning是一种极具挑战性的任务,它要求模型能够以极少量的样例进行高效学习并泛化到新类别。为此,我们向您推荐一个创新的开源项目——fewshot-egnn。这个项目源自CVPR2019的一篇论文,由KAIST和KaKaoBrain的研究者们提出,他们构建了一个名为“Edge-labeling Graph Neural Network”(EGNN)的框架,旨在提升Few-shot Learning的表现。
项目介绍
fewshot-egnn项目提供PyTorch实现,该实现基于图神经网络,但与传统的节点标签框架不同,它专注于预测边的标签而非节点的标签,这使得EGNN能直接利用类内相似性和类间差异性,从而逐步演化出清晰的聚类结构。此外,该项目支持变数量的分类任务,并能进行半监督学习,且易于扩展进行传播推理。
项目技术分析
EGNN的核心是其边缘标签的图神经网络架构,通过迭代更新边标签,有效利用了数据中的内在关系。相对于节点标签方法,EGNN更直接地表达了数据间的联系,使模型在低样本情况下也能学到更有意义的表示。此外,项目采用的是Episodic训练策略,以边缘标签损失函数优化参数,保证模型对未见过的低数据问题有良好的泛化能力。
应用场景
fewshot-egnn适合于各种图像分类任务,尤其在资源有限的情况下。无论是监督学习还是半监督学习,不论是在标准的5-way 1-shot或5-shot设置中,还是在不同数量类别的跨方式实验中,都有出色的表现。对于那些需要快速适应新类型数据的任务,例如视觉识别、自然语言理解等领域,EGNN都能发挥强大的潜力。
项目特点
- 新颖的边标签机制:EGNN以独特的视角重新定义了图神经网络在Few-shot Learning中的应用。
- 出色的性能:在多个基准数据集上,EGNN在多轮实验中表现出优于现有方法的性能。
- 灵活性:支持不同数量的类别,无需重训练即可适应变化,易于进行传播推理。
- 可复现性:项目提供了详细的训练和评估脚本,以及预训练模型,方便研究者验证和进一步开发。
总之,fewshot-egnn是一个值得尝试的前沿技术,它的创新思路和优秀表现将为您的 Few-shot Learning 实验室增添新的可能。立即加入,一起探索深度学习的无限潜能吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00