Awesome Deep Trading 使用教程
2024-08-31 09:32:35作者:薛曦旖Francesca
项目介绍
awesome-deep-trading 是一个汇集了机器学习在算法交易中应用的优秀资源列表。该项目由 Craig Bailes 维护,包含了论文、代码、工具和相关资源,旨在帮助研究人员和开发者探索和应用深度学习技术于金融交易领域。
项目快速启动
克隆项目
首先,克隆 awesome-deep-trading 仓库到本地:
git clone https://github.com/cbailes/awesome-deep-trading.git
cd awesome-deep-trading
浏览资源
项目的主要内容在 README.md 文件中,你可以通过以下命令查看:
cat README.md
示例代码
虽然项目本身不包含具体的代码实现,但你可以根据 README.md 中的资源链接找到相关的代码示例和论文。以下是一个简单的示例,展示如何使用深度学习模型进行股票价格预测:
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 读取数据
data = pd.read_csv('stock_data.csv')
prices = data['Close'].values.reshape(-1, 1)
# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_prices = scaler.fit_transform(prices)
# 准备训练数据
X_train, y_train = [], []
for i in range(60, len(scaled_prices)):
X_train.append(scaled_prices[i-60:i, 0])
y_train.append(scaled_prices[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
# 构建LSTM模型
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(LSTM(units=50))
model.add(Dense(units=1))
# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')
# 训练模型
model.fit(X_train, y_train, epochs=1, batch_size=1, verbose=2)
# 预测
predicted_prices = model.predict(X_train)
predicted_prices = scaler.inverse_transform(predicted_prices)
应用案例和最佳实践
案例一:使用深度强化学习进行股票交易
- 论文: "Deep Reinforcement Learning for Financial Trading Using Price Trailing"
- 实现: 使用深度强化学习模型来预测股票价格并执行交易策略。
案例二:使用卷积神经网络进行金融交易模型
- 论文: "Financial Trading Model with Stock Bar Chart Image Time Series with Deep Convolutional Neural Networks"
- 实现: 利用卷积神经网络处理股票图表图像数据,进行交易决策。
典型生态项目
TensorFlow
- 介绍: 一个开源的深度学习框架,广泛用于构建和训练神经网络模型。
- 链接: TensorFlow
PyTorch
- 介绍: 另一个流行的深度学习框架,以其动态计算图和易用性著称。
- 链接: PyTorch
Keras
- 介绍: 一个高层神经网络API,能够运行在TensorFlow、CNTK或Theano之上,简化模型构建过程。
- 链接: Keras
通过这些资源和工具,你可以更深入地探索和应用深度学习技术于金融交易领域。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248