Awesome Deep Trading 使用教程
2024-08-31 16:51:34作者:薛曦旖Francesca
项目介绍
awesome-deep-trading 是一个汇集了机器学习在算法交易中应用的优秀资源列表。该项目由 Craig Bailes 维护,包含了论文、代码、工具和相关资源,旨在帮助研究人员和开发者探索和应用深度学习技术于金融交易领域。
项目快速启动
克隆项目
首先,克隆 awesome-deep-trading 仓库到本地:
git clone https://github.com/cbailes/awesome-deep-trading.git
cd awesome-deep-trading
浏览资源
项目的主要内容在 README.md 文件中,你可以通过以下命令查看:
cat README.md
示例代码
虽然项目本身不包含具体的代码实现,但你可以根据 README.md 中的资源链接找到相关的代码示例和论文。以下是一个简单的示例,展示如何使用深度学习模型进行股票价格预测:
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 读取数据
data = pd.read_csv('stock_data.csv')
prices = data['Close'].values.reshape(-1, 1)
# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_prices = scaler.fit_transform(prices)
# 准备训练数据
X_train, y_train = [], []
for i in range(60, len(scaled_prices)):
X_train.append(scaled_prices[i-60:i, 0])
y_train.append(scaled_prices[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
# 构建LSTM模型
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(LSTM(units=50))
model.add(Dense(units=1))
# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')
# 训练模型
model.fit(X_train, y_train, epochs=1, batch_size=1, verbose=2)
# 预测
predicted_prices = model.predict(X_train)
predicted_prices = scaler.inverse_transform(predicted_prices)
应用案例和最佳实践
案例一:使用深度强化学习进行股票交易
- 论文: "Deep Reinforcement Learning for Financial Trading Using Price Trailing"
- 实现: 使用深度强化学习模型来预测股票价格并执行交易策略。
案例二:使用卷积神经网络进行金融交易模型
- 论文: "Financial Trading Model with Stock Bar Chart Image Time Series with Deep Convolutional Neural Networks"
- 实现: 利用卷积神经网络处理股票图表图像数据,进行交易决策。
典型生态项目
TensorFlow
- 介绍: 一个开源的深度学习框架,广泛用于构建和训练神经网络模型。
- 链接: TensorFlow
PyTorch
- 介绍: 另一个流行的深度学习框架,以其动态计算图和易用性著称。
- 链接: PyTorch
Keras
- 介绍: 一个高层神经网络API,能够运行在TensorFlow、CNTK或Theano之上,简化模型构建过程。
- 链接: Keras
通过这些资源和工具,你可以更深入地探索和应用深度学习技术于金融交易领域。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868