Apollo Router v1.60.0 版本发布:性能优化与错误处理增强
Apollo Router 是一个高性能的 GraphQL 网关,用于构建和管理 GraphQL API。作为 GraphQL 生态系统中的重要组件,它能够聚合多个后端服务的数据,并提供统一的 GraphQL 接口。最新发布的 v1.60.0 版本带来了一系列性能优化和错误处理改进,进一步提升了路由器的稳定性和效率。
性能优化亮点
本次版本在多个方面进行了性能优化,显著提升了路由器的处理能力:
-
查询哈希算法改进:采用预计算模式哈希的新算法,简化了查询哈希过程,降低了 CPU 和内存使用量。这种优化使得哈希计算更加高效且资源消耗更可预测。
-
需求控制性能提升:通过将更多数据计算移至插件初始化阶段,并合并查找查询,优化了需求控制的性能。具体改进包括将参数的成本指令与字段定义存储在一起,以及减少响应评分时的查找次数。
-
系统运行数据优化:修复了自 v1.59.0 版本以来因使用
sysinfo库导致的内存使用增加问题。通过禁用不必要的并行处理和系统进程数据收集,减少了约 150MB 的内存占用。
错误处理与稳定性增强
-
无效错误路径处理:现在当子图返回包含无效路径的错误时,路由器会将这些路径截断至最近的合法字段路径,而不是静默丢弃错误。这符合 GraphQL 规范要求,确保错误能够正确关联到响应字段。
-
订阅操作初始化修复:解决了订阅节点中主节点操作初始化问题,确保其与其他查询计划节点采用相同的初始化方式。
-
子图请求头修复:恢复了在 v1.59.0 中被意外移除的 Content-Length 头,确保与依赖此头的 GraphQL 服务器的兼容性。
监控与可观测性改进
新增了批处理器指标,帮助用户更好地观察和调整批处理设置:
- 新增
apollo.router.telemetry.batch_processor.errors指标,用于监控导出批处理器遇到的错误数量 - 改进了丢弃 span 的日志消息,现在会明确指出受影响的批处理器
架构与维护更新
-
移除传统查询规划器:完全移除了传统查询规划器及其相关配置选项,包括
experimental_query_planner_mode、supergraph.query_planning.experimental_parallelism和supergraph.experimental_reuse_query_fragments。 -
指标迁移:将多个基于
tracing的遗留指标迁移到 OpenTelemetry 仪器,提升了指标系统的现代化程度和一致性。 -
移除实验性重试选项:由于使用有限且功能不完善,移除了
experimental_retry选项。
文档完善
为路由器遥测功能新增了常见用例的配置示例,包括选择器和条件的使用示例,帮助用户更快上手相关功能配置。
Apollo Router v1.60.0 通过这些改进,进一步巩固了其作为高性能 GraphQL 网关的地位,为用户提供了更稳定、更高效的 GraphQL 服务聚合能力。特别是性能优化方面的改进,使得路由器在处理复杂查询和大规模请求时表现更加出色。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00