PyNNDescent 使用教程
2024-09-19 04:48:56作者:冯爽妲Honey
1. 项目介绍
1.1 项目概述
PyNNDescent 是一个用于近似最近邻搜索的 Python 库。它基于 Nearest Neighbor Descent 算法,能够快速构建 k-近邻图并进行近似最近邻搜索。该库特别适用于需要高精度(80%-100% 准确率)近似最近邻搜索的场景。
1.2 主要功能
- 近似最近邻搜索:提供快速且高效的近似最近邻查询。
- 多种距离度量支持:支持多种距离度量,包括欧几里得、曼哈顿、余弦等。
- 集成 Scikit-learn:与 Scikit-learn 无缝集成,支持 KNeighborTransformer。
1.3 项目优势
- 高性能:在 ann-benchmarks 系统中表现优异。
- 易于安装:可通过 pip 或 conda 轻松安装。
- 灵活性:支持自定义距离度量,适用于多种应用场景。
2. 项目快速启动
2.1 安装
通过 pip 安装:
pip install pynndescent
通过 conda 安装:
conda install -c conda-forge pynndescent
2.2 基本使用
以下是一个简单的示例,展示如何构建索引并进行近似最近邻搜索。
from pynndescent import NNDescent
import numpy as np
# 生成一些示例数据
data = np.random.rand(100, 10)
# 构建索引
index = NNDescent(data)
# 生成查询数据
query_data = np.random.rand(1, 10)
# 查询最近的 5 个邻居
neighbors, distances = index.query(query_data, k=5)
print("最近的邻居索引:", neighbors)
print("对应的距离:", distances)
3. 应用案例和最佳实践
3.1 应用案例
- 图像检索:在图像检索系统中,PyNNDescent 可以用于快速找到与查询图像最相似的图像。
- 推荐系统:在推荐系统中,可以使用 PyNNDescent 来找到与用户偏好最接近的物品。
- 生物信息学:在基因序列分析中,PyNNDescent 可以用于快速找到相似的基因序列。
3.2 最佳实践
- 选择合适的距离度量:根据具体应用场景选择合适的距离度量,以提高搜索效率和准确性。
- 调整参数:根据数据集的大小和复杂度,调整 PyNNDescent 的参数(如
n_neighbors
、diversify_prob
等)以获得最佳性能。
4. 典型生态项目
4.1 Scikit-learn
PyNNDescent 与 Scikit-learn 无缝集成,可以作为 KNeighborTransformer 的替代方案,适用于需要近似最近邻搜索的 Scikit-learn 算法。
4.2 Annoy
Annoy 是另一个流行的近似最近邻搜索库,与 PyNNDescent 相比,Annoy 在某些场景下可能具有更高的性能,但 PyNNDescent 提供了更多的灵活性和自定义选项。
4.3 HNSWlib
HNSWlib 是一个基于 Hierarchical Navigable Small World 图的近似最近邻搜索库,适用于大规模数据集,与 PyNNDescent 相比,HNSWlib 在某些场景下可能具有更高的搜索速度。
通过以上内容,您可以快速了解并开始使用 PyNNDescent 进行近似最近邻搜索。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5