PyNNDescent 使用教程
2024-09-19 12:14:40作者:冯爽妲Honey
1. 项目介绍
1.1 项目概述
PyNNDescent 是一个用于近似最近邻搜索的 Python 库。它基于 Nearest Neighbor Descent 算法,能够快速构建 k-近邻图并进行近似最近邻搜索。该库特别适用于需要高精度(80%-100% 准确率)近似最近邻搜索的场景。
1.2 主要功能
- 近似最近邻搜索:提供快速且高效的近似最近邻查询。
- 多种距离度量支持:支持多种距离度量,包括欧几里得、曼哈顿、余弦等。
- 集成 Scikit-learn:与 Scikit-learn 无缝集成,支持 KNeighborTransformer。
1.3 项目优势
- 高性能:在 ann-benchmarks 系统中表现优异。
- 易于安装:可通过 pip 或 conda 轻松安装。
- 灵活性:支持自定义距离度量,适用于多种应用场景。
2. 项目快速启动
2.1 安装
通过 pip 安装:
pip install pynndescent
通过 conda 安装:
conda install -c conda-forge pynndescent
2.2 基本使用
以下是一个简单的示例,展示如何构建索引并进行近似最近邻搜索。
from pynndescent import NNDescent
import numpy as np
# 生成一些示例数据
data = np.random.rand(100, 10)
# 构建索引
index = NNDescent(data)
# 生成查询数据
query_data = np.random.rand(1, 10)
# 查询最近的 5 个邻居
neighbors, distances = index.query(query_data, k=5)
print("最近的邻居索引:", neighbors)
print("对应的距离:", distances)
3. 应用案例和最佳实践
3.1 应用案例
- 图像检索:在图像检索系统中,PyNNDescent 可以用于快速找到与查询图像最相似的图像。
- 推荐系统:在推荐系统中,可以使用 PyNNDescent 来找到与用户偏好最接近的物品。
- 生物信息学:在基因序列分析中,PyNNDescent 可以用于快速找到相似的基因序列。
3.2 最佳实践
- 选择合适的距离度量:根据具体应用场景选择合适的距离度量,以提高搜索效率和准确性。
- 调整参数:根据数据集的大小和复杂度,调整 PyNNDescent 的参数(如
n_neighbors、diversify_prob等)以获得最佳性能。
4. 典型生态项目
4.1 Scikit-learn
PyNNDescent 与 Scikit-learn 无缝集成,可以作为 KNeighborTransformer 的替代方案,适用于需要近似最近邻搜索的 Scikit-learn 算法。
4.2 Annoy
Annoy 是另一个流行的近似最近邻搜索库,与 PyNNDescent 相比,Annoy 在某些场景下可能具有更高的性能,但 PyNNDescent 提供了更多的灵活性和自定义选项。
4.3 HNSWlib
HNSWlib 是一个基于 Hierarchical Navigable Small World 图的近似最近邻搜索库,适用于大规模数据集,与 PyNNDescent 相比,HNSWlib 在某些场景下可能具有更高的搜索速度。
通过以上内容,您可以快速了解并开始使用 PyNNDescent 进行近似最近邻搜索。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C078
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
463
3.45 K
Ascend Extension for PyTorch
Python
270
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
187
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692