推荐开源项目:FINCH——快速无参数聚类算法
2024-05-21 04:39:59作者:劳婵绚Shirley
在数据挖掘和机器学习领域中,聚类是一种重要的无监督学习方法,它能够帮助我们发现数据中的天然结构。今天,我想要向大家推荐一款独特的开源聚类工具——First Integer Neighbor Clustering Hierarchy(FINCH)。这款算法以其速度和高质量的聚类结果而备受赞誉。
1、项目介绍
FINCH 是一种基于 Python 实现的快速且可扩展的聚类算法,其设计思路源于论文《Efficient Parameter-free Clustering Using First Neighbor Relations》(发表于 CVPR 2019)。无需任何预设参数,FINCH 能够自适应地处理各种复杂的数据集,并提供出色的聚类性能。除此之外,项目还包括了 MATLAB 版本的实现,以满足不同用户的需求。
2、项目技术分析
FINCH 算法的核心在于利用“第一个近邻”关系来构建层次聚类树。通过高效的邻居搜索策略(如可选的 PyNNDescent 库),该算法能够在大数据集上实现快速聚类,同时保持高精度。算法对初始排名和所需聚类数等参数不敏感,使得它在实际应用中更加灵活。
3、项目及技术应用场景
- 图像分析:FINCH 可用于图像特征点的聚类,例如在 STL-10 数据集上的应用。
- 视频分割:TW-FINCH,这是 FINCH 的一个变体,特别适用于视频帧的分割任务。
- 高维数据分析:与 h-nne 工具结合,可以进行快速的维度减缩和数据可视化。
这些应用场景展示了 FINCH 在多种复杂问题中的强大适用性。
4、项目特点
- 快速高效:FINCH 使用高效算法,在大规模数据集上运行迅速。
- 无参数设置:无需预先确定聚类数量或其他参数,自动适应数据分布。
- 兼容性强:提供了 Python 和 MATLAB 两种版本,方便不同平台和语言环境的开发者使用。
- 高度可定制化:支持自定义距离度量和输出控制选项。
为了更好地理解和使用 FINCH,项目提供了一系列演示笔记本,包括在 2D 数据和 STL-10 图像数据集上的应用实例。
最后,对于希望引用 FINCH 的研究者,请参考提供的论文引用信息。
该项目虽非商业用途,但如果需要商业许可,建议联系作者获取授权。
总体来说,无论是学术研究还是工程实践,FINCH 都是值得信赖的聚类利器。如果你正在寻找一个既简单又强大的聚类解决方案,不妨试试 FINCH,相信它能为你的工作带来惊喜。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1