推荐开源项目:FINCH——快速无参数聚类算法
2024-05-21 04:39:59作者:劳婵绚Shirley
在数据挖掘和机器学习领域中,聚类是一种重要的无监督学习方法,它能够帮助我们发现数据中的天然结构。今天,我想要向大家推荐一款独特的开源聚类工具——First Integer Neighbor Clustering Hierarchy(FINCH)。这款算法以其速度和高质量的聚类结果而备受赞誉。
1、项目介绍
FINCH 是一种基于 Python 实现的快速且可扩展的聚类算法,其设计思路源于论文《Efficient Parameter-free Clustering Using First Neighbor Relations》(发表于 CVPR 2019)。无需任何预设参数,FINCH 能够自适应地处理各种复杂的数据集,并提供出色的聚类性能。除此之外,项目还包括了 MATLAB 版本的实现,以满足不同用户的需求。

2、项目技术分析
FINCH 算法的核心在于利用“第一个近邻”关系来构建层次聚类树。通过高效的邻居搜索策略(如可选的 PyNNDescent 库),该算法能够在大数据集上实现快速聚类,同时保持高精度。算法对初始排名和所需聚类数等参数不敏感,使得它在实际应用中更加灵活。
3、项目及技术应用场景
- 图像分析:FINCH 可用于图像特征点的聚类,例如在 STL-10 数据集上的应用。
- 视频分割:TW-FINCH,这是 FINCH 的一个变体,特别适用于视频帧的分割任务。
- 高维数据分析:与 h-nne 工具结合,可以进行快速的维度减缩和数据可视化。
这些应用场景展示了 FINCH 在多种复杂问题中的强大适用性。
4、项目特点
- 快速高效:FINCH 使用高效算法,在大规模数据集上运行迅速。
- 无参数设置:无需预先确定聚类数量或其他参数,自动适应数据分布。
- 兼容性强:提供了 Python 和 MATLAB 两种版本,方便不同平台和语言环境的开发者使用。
- 高度可定制化:支持自定义距离度量和输出控制选项。
为了更好地理解和使用 FINCH,项目提供了一系列演示笔记本,包括在 2D 数据和 STL-10 图像数据集上的应用实例。
最后,对于希望引用 FINCH 的研究者,请参考提供的论文引用信息。
该项目虽非商业用途,但如果需要商业许可,建议联系作者获取授权。
总体来说,无论是学术研究还是工程实践,FINCH 都是值得信赖的聚类利器。如果你正在寻找一个既简单又强大的聚类解决方案,不妨试试 FINCH,相信它能为你的工作带来惊喜。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
340
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
266
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
668
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
45
32