PFLlib中FedPHP算法实现的技术分析与改进
2025-07-09 16:32:20作者:吴年前Myrtle
引言
在联邦学习领域,处理非独立同分布(Non-IID)数据是一个重要挑战。PFL-Non-IID项目中的FedPHP算法作为一种个性化联邦学习方法,旨在解决这一难题。本文将对原始实现进行技术分析,并探讨其改进方案。
FedPHP算法原理
FedPHP(Federated Learning with Personalized Historical Prior)的核心思想是利用个性化历史先验(HPM)来指导本地模型训练。该方法通过以下机制工作:
- 每个客户端维护一个个性化模型和一个HPM模型
- 在每轮训练中,HPM作为知识迁移的来源指导个性化模型训练
- 训练完成后,个性化模型以一定比例更新HPM
这种设计能够有效保留客户端的个性化特征,同时从全局模型中获益。
原始实现的问题分析
在PFL-Non-IID项目的原始实现中,存在几个与论文描述不符的技术细节:
- 模型角色混淆:代码中使用
model_s作为全局模型的副本,而非论文描述的HPM角色 - 知识迁移方向错误:训练过程中使用全局模型而非HPM进行知识迁移
- HPM更新缺失:缺少对HPM模型的更新机制
这些问题可能导致算法无法充分发挥其理论优势,影响个性化学习效果。
技术改进方案
针对上述问题,我们提出以下改进措施:
-
模型角色重构:
- 将
model_s重命名为model_p,明确其作为HPM的角色 - 确保HPM独立于全局模型,保持客户端的个性化特征
- 将
-
知识迁移修正:
- 在训练过程中使用HPM(
model_p)而非全局模型进行知识迁移 - 调整损失函数计算,确保正确的知识迁移方向
- 在训练过程中使用HPM(
-
HPM更新机制:
mu = self.mu * self.round for new_param, old_param in zip(self.model.parameters(), self.model_p.parameters()): old_param.data = new_param * (1 - mu) + old_param * mu这段代码实现了HPM的渐进式更新,其中mu控制着更新强度
-
参数设置优化:
- 简化
set_parameters函数,专注于全局模型到个性化模型的参数传递 - 移除不必要的参数复制操作
- 简化
改进后的优势
经过上述修改后,算法将具有以下优势:
- 更符合FedPHP论文的理论设计
- 更好的个性化学习效果
- 更清晰的代码结构和职责划分
- 更稳定的模型收敛性
结论
本文分析了PFL-Non-IID项目中FedPHP实现的潜在问题,并提出了相应的改进方案。这些修改使算法实现更贴近原始论文思想,能够更好地处理Non-IID数据下的个性化联邦学习任务。对于联邦学习研究者和实践者而言,理解这些技术细节对于正确实现和应用FedPHP算法至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146