Spark信息论特征选择框架教程
2024-09-14 14:33:35作者:劳婵绚Shirley
1. 项目介绍
概述
spark-infotheoretic-feature-selection
是一个基于信息论的特征选择框架,专为大数据问题设计。该框架在Apache Spark上实现,支持多种常用的特征选择方法,如mRMR(最小冗余最大相关)、InfoGain(信息增益)、JMI(联合互信息)等。
主要特点
- 支持大数据处理:适用于处理高维数据集和大规模数据。
- 多种特征选择方法:包括mRMR、InfoGain、JMI等。
- 高性能:通过Spark的分布式计算能力,显著提升特征选择的速度。
引用
如果您在研究中使用了此框架,请引用以下文献:
S. Ramírez-Gallego, H. Mouriño-Talín, D. Martínez-Rego, V. Bolón-Canedo, J. M. Benítez, A. Alonso-Betanzos, F. Herrera, "An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark", in IEEE Transactions on Systems, Man, and Cybernetics: Systems, in press, pp.1-13, doi: 10.1109/TSMC.2017.2670926
2. 项目快速启动
环境准备
确保您已经安装了以下软件:
- Apache Spark
- Scala
- Maven 或 SBT
安装
-
克隆项目仓库:
git clone https://github.com/sramirez/spark-infotheoretic-feature-selection.git
-
进入项目目录:
cd spark-infotheoretic-feature-selection
-
使用SBT构建项目:
sbt package
示例代码
以下是一个简单的示例,展示如何在Spark中使用该框架进行特征选择:
import org.apache.spark.ml.feature._
val selector = new InfoThSelector()
.setSelectCriterion("mrmr")
.setNPartitions(100)
.setNumTopFeatures(10)
.setFeaturesCol("features")
.setLabelCol("class")
.setOutputCol("selectedFeatures")
val result = selector.fit(df).transform(df)
3. 应用案例和最佳实践
应用案例
该框架已成功应用于多个大型数据集,如:
- GECCO-2014数据集:用于蛋白质结构预测领域,包含6400万实例和631个属性。
- kddb数据集:包含2000万实例和近3000万个属性。
最佳实践
- 数据预处理:确保数据已离散化为整数值,以提高特征选择的效率。
- 参数调优:根据数据集的规模和复杂度,调整
setNPartitions
和setNumTopFeatures
等参数。
4. 典型生态项目
相关项目
- spark-MDLP-discretization:用于数据离散化的Spark包,与本项目配合使用效果更佳。
- Apache Spark MLlib:Spark的机器学习库,提供丰富的机器学习算法和工具。
集成示例
以下是如何将spark-infotheoretic-feature-selection
与spark-MDLP-discretization
结合使用的示例:
import org.apache.spark.ml.feature._
// 离散化数据
val discretizer = new MDLPDiscretizer()
.setInputCol("features")
.setOutputCol("discretizedFeatures")
val discretizedData = discretizer.fit(df).transform(df)
// 特征选择
val selector = new InfoThSelector()
.setSelectCriterion("mrmr")
.setNPartitions(100)
.setNumTopFeatures(10)
.setFeaturesCol("discretizedFeatures")
.setLabelCol("class")
.setOutputCol("selectedFeatures")
val result = selector.fit(discretizedData).transform(discretizedData)
通过以上步骤,您可以快速上手并应用spark-infotheoretic-feature-selection
框架进行特征选择。
热门项目推荐
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie057毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】Python00
热门内容推荐
最新内容推荐
项目优选
收起

Python - 100天从新手到大师
Python
610
115

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79

✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29

🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
376
36

🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44

这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0