Spark信息论特征选择框架教程
2024-09-14 17:50:35作者:劳婵绚Shirley
1. 项目介绍
概述
spark-infotheoretic-feature-selection 是一个基于信息论的特征选择框架,专为大数据问题设计。该框架在Apache Spark上实现,支持多种常用的特征选择方法,如mRMR(最小冗余最大相关)、InfoGain(信息增益)、JMI(联合互信息)等。
主要特点
- 支持大数据处理:适用于处理高维数据集和大规模数据。
- 多种特征选择方法:包括mRMR、InfoGain、JMI等。
- 高性能:通过Spark的分布式计算能力,显著提升特征选择的速度。
引用
如果您在研究中使用了此框架,请引用以下文献:
S. Ramírez-Gallego, H. Mouriño-Talín, D. Martínez-Rego, V. Bolón-Canedo, J. M. Benítez, A. Alonso-Betanzos, F. Herrera, "An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark", in IEEE Transactions on Systems, Man, and Cybernetics: Systems, in press, pp.1-13, doi: 10.1109/TSMC.2017.2670926
2. 项目快速启动
环境准备
确保您已经安装了以下软件:
- Apache Spark
- Scala
- Maven 或 SBT
安装
-
克隆项目仓库:
git clone https://github.com/sramirez/spark-infotheoretic-feature-selection.git -
进入项目目录:
cd spark-infotheoretic-feature-selection -
使用SBT构建项目:
sbt package
示例代码
以下是一个简单的示例,展示如何在Spark中使用该框架进行特征选择:
import org.apache.spark.ml.feature._
val selector = new InfoThSelector()
.setSelectCriterion("mrmr")
.setNPartitions(100)
.setNumTopFeatures(10)
.setFeaturesCol("features")
.setLabelCol("class")
.setOutputCol("selectedFeatures")
val result = selector.fit(df).transform(df)
3. 应用案例和最佳实践
应用案例
该框架已成功应用于多个大型数据集,如:
- GECCO-2014数据集:用于蛋白质结构预测领域,包含6400万实例和631个属性。
- kddb数据集:包含2000万实例和近3000万个属性。
最佳实践
- 数据预处理:确保数据已离散化为整数值,以提高特征选择的效率。
- 参数调优:根据数据集的规模和复杂度,调整
setNPartitions和setNumTopFeatures等参数。
4. 典型生态项目
相关项目
- spark-MDLP-discretization:用于数据离散化的Spark包,与本项目配合使用效果更佳。
- Apache Spark MLlib:Spark的机器学习库,提供丰富的机器学习算法和工具。
集成示例
以下是如何将spark-infotheoretic-feature-selection与spark-MDLP-discretization结合使用的示例:
import org.apache.spark.ml.feature._
// 离散化数据
val discretizer = new MDLPDiscretizer()
.setInputCol("features")
.setOutputCol("discretizedFeatures")
val discretizedData = discretizer.fit(df).transform(df)
// 特征选择
val selector = new InfoThSelector()
.setSelectCriterion("mrmr")
.setNPartitions(100)
.setNumTopFeatures(10)
.setFeaturesCol("discretizedFeatures")
.setLabelCol("class")
.setOutputCol("selectedFeatures")
val result = selector.fit(discretizedData).transform(discretizedData)
通过以上步骤,您可以快速上手并应用spark-infotheoretic-feature-selection框架进行特征选择。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134