SystemDS 深度学习系统教程
2024-08-07 05:59:52作者:宗隆裙
1. 项目介绍
SystemDS 是一个灵活且可扩展的机器学习系统,致力于实现数据科学生命周期的端到端支持。从数据集成、清洗、特征工程,到本地和分布式模型训练的高效执行,再到部署和服务,SystemDS 提供了一整套工具栈。它的特点包括:
- 算法自定义性:通过类似 R 和 Python 的语言实现。
- 多种执行模式:Spark MLContext、Spark Batch、Standalone 和 JMLC。
- 自动优化:基于数据和集群特性进行优化,以确保效率和可伸缩性。
SystemDS 支持 Java 11、Python 3.5 及以上版本、Hadoop 3.3.x 和 Spark 3.5.x,以及 Nvidia CUDA 10.2(CuDNN 7.x)和 Intel MKL (<=2019.x)。
2. 项目快速启动
首先,确保你的环境中已经安装了 Java 11 和 Maven。接下来,克隆 SystemDS 仓库并构建项目:
安装 SystemDS
git clone https://github.com/apache/systemds.git
cd systemds
mvn clean package -Pdist,spark-3.x -DskipTests
运行 HelloWorld 示例
在成功构建后,可以运行简单的示例脚本:
./bin/systemds.sh script run ./scripts/examples/java/hello-world.dml
这将在控制台上打印 "Hello World!"。
3. 应用案例和最佳实践
虽然具体的案例和最佳实践可能会因具体场景而异,但以下是一些常见的使用方式:
- 数据预处理:利用内置函数进行数据清理和转换。
- 模型训练:使用 DML 语法创建和训练机器学习模型。
- 性能优化:结合 SystemDS 自动优化功能,调整执行计划以达到最佳性能。
- 分布式执行:在 Spark 上运行大规模的数据科学任务。
4. 典型生态项目
SystemDS 能够很好地融入现有的大数据生态系统,例如:
- Apache Hadoop: 作为数据存储和处理的基础框架。
- Apache Spark: 支持 Spark MLContext 模式,可在 Spark 上执行分布式计算。
- TensorFlow, PyTorch: 通过 JNI 接口,与深度学习库集成进行 GPU 加速运算。
集成这些项目可以帮助构建完整的数据分析和机器学习平台,提供更强大的数据处理能力。
更多关于 SystemDS 的详细信息和使用指南,可以参考其官方网站和官方文档。如果你遇到任何问题或需要进一步的帮助,可以在 Apache 社区中寻找答案或者参与讨论。祝你在使用 SystemDS 的旅程中一切顺利!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135