Decision Transformer中处理MultiDiscrete动作空间的技术方案
2025-06-30 16:59:38作者:乔或婵
理解MultiDiscrete动作空间
在强化学习环境中,MultiDiscrete动作空间是一种特殊的动作表示形式,它由多个离散动作组合而成。与简单的离散动作空间不同,MultiDiscrete允许每个动作维度有自己独立的离散取值范围。这种动作空间常见于需要同时控制多个独立参数的场景。
问题背景
在使用Decision Transformer处理mobile-env环境时,我们遇到了一个挑战:该环境使用MultiDiscrete动作空间,而标准的Decision Transformer实现通常输出连续动作值。这就产生了如何将连续输出适配到离散动作空间的问题。
解决方案分析
方案一:输出维度扩展与重塑
最直接的方法是将模型的输出维度扩展到足够大,然后通过reshape操作将其转换为所需的MultiDiscrete形状。具体来说:
- 计算MultiDiscrete动作空间的总维度数(各离散维度取值数量的乘积)
- 让模型输出对应大小的连续值向量
- 通过reshape操作将输出转换为目标形状
- 对每个离散维度使用argmax或采样操作确定最终动作
这种方法实现简单,但可能需要调整损失函数以适配新的输出结构。
方案二:多动作令牌设计
更优雅的解决方案是采用多动作令牌机制:
- 为MultiDiscrete动作空间的每个维度分配一个独立的动作令牌
- 模型为每个令牌预测对应的离散动作
- 将这些预测结果组合成最终的MultiDiscrete动作
这种方法更符合MultiDiscrete动作空间的语义,每个维度的动作预测相互独立,但需要修改模型架构以支持多令牌预测。
实现考量
无论选择哪种方案,都需要注意以下几点:
- 训练稳定性:离散动作空间的训练通常比连续空间更具挑战性,可能需要调整学习率或使用特殊的训练技巧
- 探索策略:在MultiDiscrete空间中,探索策略的设计需要考虑各维度的独立性
- 模型容量:处理MultiDiscrete空间可能需要更大的模型容量来学习各维度间的关系
实际应用建议
对于mobile-env这样的环境,建议先尝试方案一进行快速验证,因为它对现有代码的改动最小。如果效果不理想,再考虑实现更复杂的多令牌方案。在实现过程中,可以逐步增加以下优化:
- 引入动作掩码处理非法动作
- 为各动作维度设计独立的探索策略
- 使用分层强化学习方法处理高维离散动作空间
通过合理选择和处理MultiDiscrete动作空间,Decision Transformer可以有效地应用于更广泛的强化学习环境。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322