首页
/ 探索时间序列数据的未来:Time Series Data Analytics 库

探索时间序列数据的未来:Time Series Data Analytics 库

2024-05-22 15:41:30作者:伍霜盼Ellen

在处理时间序列数据时,我们面临着高维度、错误或冗余数据以及大规模数据集的挑战。关键在于合理的时间序列表示法和有效的相似度测量方法。虽然传统方法如动态时间规整(DTW)和欧氏距离(ED)在特定场景下表现出色,但它们已无法满足当今的需求。过度依赖UCR时间序列分类基准导致了对精度的关注过于单一,并假设数据已经预处理。

这个名为 Time Series Data Analytics 的开源项目带来了全新的视角。它包括一种符号时间序列表示法(SFA)、三种单变量模型(WEASEL、BOSS 和 BOSSVS)以及一种多变量模型(WEASEL+MUSE),为实现无对齐、抗噪声且可扩展的时间序列数据分析提供了强大的工具。此外,还提供了一种早期时间序列分类框架(TEASER)。

项目亮点:

  1. 维度降低:SFA 超越了许多基于均值的降维技术,如 SAX、PLA、PAA 或 APCA,其基础是更精确的离散傅立叶变换。

  2. 高精度分类:WEASEL 和 BOSS 集群分类器提供了最先进的分类准确率。

  3. 高效与准确性:WEASEL 采用袋式模式方法,以高度竞争性的分类准确性和快速性能脱颖而出,尤其适用于有严格运行时间和质量要求的领域。

  4. 多变量分类:WEASEL+MUSE 是一个多变量时间序列分类器,展现了同类最佳的分类准确率。

  5. 早期准确分类:TEASER 提供了一个框架,可以在保持相同(甚至更高)水平准确性的前提下,提前两到三倍进行时间序列分类。

技术分析:

项目中的算法涵盖了以下几个方面:

  • SFA:通过四步骤(傅里叶变换、低通滤波、量化和构建SFA词)去除噪音,提供字符串表示,便于使用字符串算法。
  • WEASEL:结合统计特征选择、单词共现和监督符号表示来生成区分性单词,达到早期并准确的分类。
  • BOSS:通过SFA词汇表的差异比较两个时间序列,提供快速而精确的分类。
  • BOSSVS:利用词频-逆文档频率(tf-idf)减少计算复杂性和噪音影响,显著提高效率。
  • WEASEL+MUSE:针对多变量数据的高级分类模型,同样展现出卓越的准确率。

应用场景:

这些技术和模型可以应用于各种领域,例如金融市场的趋势预测、医疗领域的健康监测、工业自动化过程控制、物联网设备的数据分析等,任何涉及随时间变化的数据集的场景都可以从中受益。

如何使用:

项目提供Gradle库支持,只需简单几步即可集成到你的Java项目中。对于IDE用户,无论是IntelliJ IDEA还是Eclipse,都有相应的导入教程。

Time Series Data Analytics 不仅是一个技术突破,也是一个重构时间序列数据分析方式的尝试。它不仅提高了分析的准确性和效率,而且简化了数据处理流程,是任何寻求优化时间序列处理策略的开发者的理想选择。现在就加入,开启时间序列数据的新篇章!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1