开源项目教程:Practical Time Series Analysis
2024-08-17 21:40:19作者:殷蕙予
项目介绍
本项目是由Packt Publishing出版的《Practical Time Series Analysis》一书的配套代码库。该项目旨在帮助读者通过实践学习时间序列分析的基本概念和高级技术。代码库包含了书中各个章节的示例代码,涵盖了从基础统计方法到机器学习技术的广泛应用。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下软件:
- Python 3.x
- Git
克隆项目
首先,克隆项目到本地:
git clone https://github.com/PacktPublishing/Practical-Time-Series-Analysis.git
安装依赖
进入项目目录并安装所需的Python包:
cd Practical-Time-Series-Analysis
pip install -r requirements.txt
运行示例代码
选择一个示例代码文件,例如chapter_1/example.py,并运行它:
python chapter_1/example.py
应用案例和最佳实践
时间序列预测
时间序列预测是该项目的一个重要应用案例。通过使用ARIMA、LSTM等模型,可以对未来数据进行预测。以下是一个简单的ARIMA模型示例:
from statsmodels.tsa.arima.model import ARIMA
import pandas as pd
# 读取数据
data = pd.read_csv('data/example_data.csv', index_col='date', parse_dates=True)
# 拟合ARIMA模型
model = ARIMA(data['value'], order=(5,1,0))
model_fit = model.fit()
# 预测
forecast = model_fit.forecast(steps=10)
print(forecast)
最佳实践
- 数据预处理:确保时间序列数据是平稳的,必要时进行差分处理。
- 模型选择:根据数据特性选择合适的模型,例如对于非线性数据可以使用LSTM模型。
- 超参数调优:使用网格搜索或随机搜索进行超参数调优,以提高模型性能。
典型生态项目
Prophet
Prophet是由Facebook开发的一个开源时间序列预测工具,特别适用于具有强烈季节性影响和多个历史数据趋势的数据。
TensorFlow Time Series
TensorFlow Time Series是一个基于TensorFlow的高级时间序列预测库,提供了多种深度学习模型的实现。
Statsmodels
Statsmodels是一个Python模块,提供了用于估计多种统计模型、进行统计测试以及数据探索的类和函数。
通过结合这些生态项目,可以进一步扩展和增强时间序列分析的能力。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
649
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
649