VFIformer: 基于 Transformer 的视频帧插值
2024-09-21 07:24:25作者:庞眉杨Will
本文将介绍 VFIformer 项目,该开源项目利用 Transformer 实现视频帧插值,从而生成高质感的中间帧。以下是 VFIformer 项目的介绍、快速启动指南、应用案例和最佳实践,以及典型生态项目。
1. 项目介绍
VFIformer 是一个基于 Transformer 的视频帧插值框架,它利用 Transformer 的长距离像素相关性建模能力,有效地处理了传统卷积网络在处理大运动时的局限性。VFIformer 引入了一种新的跨尺度窗口注意力机制,通过跨尺度窗口之间的相互作用,有效地扩大了感受野并聚合了多尺度信息。VFIformer 在各种基准测试中取得了新的最佳结果,实现了高质感的视频帧插值。
2. 项目快速启动
环境配置
首先,确保您的计算机已安装 Python (>= 3.8) 和 PyTorch (>= 1.8.0)。
pip install python>=3.8
pip install torch>=1.8.0
pip install torchvision>=0.9.0
克隆项目
克隆 VFIformer 仓库:
git clone https://github.com/dvlab-research/VFIformer.git
cd VFIformer
训练数据准备
VFIformer 使用 Vimeo90K Triplet 数据集进行训练。您需要首先使用 Lite-flownet 计算帧间的真实光流,然后将计算出的光流与图像一起用于训练。
- 克隆 Lite-flownet 仓库:
git clone https://github.com/dvlab-research/Lite-flownet.git
cd Lite-flownet
- 将 VFIformer 仓库中的
compute_flow_vimeo.py脚本放置到 Lite-flownet 的主目录下,并运行:
python compute_flow_vimeo.py
确保在脚本中更改数据路径和 Lite-flownet 检查点路径。
- 准备 Vimeo90K Triplet 数据集,并使用
train.py脚本开始训练:
python train.py --data_root [your Vimeo90K path] --launcher pytorch --gpu_ids 0 1 2 3 --loss_l1 --loss_ter --loss_flow --use_tb_logger --batch_size 24 --net_name VFIformer --name train_VFIformer --max_iter 300 --crop_size 192 --save_epoch_freq 5
模型测试
下载预训练模型,并将其放置到 pretrained_models/ 目录下。然后,使用 test.py 脚本在 Vimeo90K 测试集上测试模型:
python test.py --data_root [your Vimeo90K path] --testset VimeoDataset --net_name VFIformer --resume /pretrained_models/pretrained_VFIformer/net_220.pth --save_result
3. 应用案例和最佳实践
VFIformer 可以用于多种场景,例如:
- 视频编辑: 通过插值中间帧,提高视频的流畅度和观赏性。
- 视频修复: 修复缺失或损坏的帧。
- 视频压缩: 通过插值中间帧,减少视频的数据量。
最佳实践包括:
- 数据增强: 使用多种数据增强技术,例如随机裁剪、翻转、旋转等,提高模型的泛化能力。
- 损失函数: 使用多种损失函数,例如 L1 损失、感知损失、光流损失等,提高模型的预测精度。
- 超参数调整: 调整学习率、批大小、迭代次数等超参数,获得更好的模型性能。
4. 典型生态项目
VFIformer 的典型生态项目包括:
- RIFE: RIFE 是一个基于光流的视频帧插值库,可以用于生成高质量的视频中间帧。
- SwinIR: SwinIR 是一个基于 Transformer 的图像恢复框架,可以用于图像超分辨率、去噪、去模糊等任务。
希望本文能够帮助您更好地了解和使用 VFIformer 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871