提取运动与外观:交互帧注意力驱动的高效视频帧插值
2024-05-23 07:31:53作者:吴年前Myrtle
1、项目介绍
Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation 是一个基于CVPR 2023接受的技术成果的开源项目,它提出了利用帧间注意力提取视频中的运动和外观信息的新方法。该项目旨在实现更高效、高质量的视频帧插值,以填补连续视频序列中的空白帧。
2、项目技术分析
该项目的核心在于创新地利用了帧间注意力来同时优化图像的外观信息和运动建模。通过挖掘隐藏在注意力图中的相关性,该模型能够对动态场景进行精细处理。此外,项目采用了一种混合的卷积神经网络(CNN)与Transformer框架,实现了性能与效率之间的良好平衡。实验结果显示,这种方法在固定步长和任意步长插值任务上均表现出卓越的性能,并且相比现有最先进的技术更具优势。
3、项目及技术应用场景
- 视频编辑与增强:提高视频流畅度,修复缺失或模糊的帧。
- 娱乐领域:为游戏和动画提供平滑过渡效果。
- 监控系统:增强低帧率视频监控的细节,捕捉更多动态信息。
- 运动分析:用于体育赛事回放和运动员动作分析。
- 自动驾驶:改善车载摄像头的视觉流估计,提高安全性能。
4、项目特点
- 高度创新:通过帧间注意力机制提取运动和外观信息,同时优化性能。
- 高效率:相比于现有SOTA方法,具有更低的运行时间和内存占用。
- 灵活的插值:支持2倍速率以及自定义速率的视频帧插值。
- 广泛兼容:可在Vimeo90K、UCF101等多种数据集上进行训练和评估。
- 易于使用:提供了直观的命令行界面进行演示和评估。
要体验此项目,请下载预训练模型并运行演示脚本,轻松创建平滑的视频帧插值效果。对于研究者和开发者而言,这个项目不仅是一个强大的工具,也是深入理解视频处理前沿技术的好资源。
引用项目:
如果本项目对您的工作有所帮助,请考虑引用以下论文:
@inproceedings{zhang2023extracting,
title={提取运动和外观 via 交互帧注意力的高效视频帧插值},
author={张国臻 and 朱玉涵 and 王浩楠 and 陈佑欣 and 吴刚山 and 王利民},
booktitle={计算机视觉和模式识别会议论文集},
pages={5682--5692},
year={2023}
}
该项目遵循Apache 2.0许可证,且构建于多个优秀开源项目之上,包括RIFE,PvT,IFRNet,Swin 和 HRFormer,我们对此表示衷心感谢。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0117
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
366
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869