推荐文章:深度互学习——提升模型泛化能力的新途径
2024-05-21 11:42:56作者:农烁颖Land
推荐文章:深度互学习——提升模型泛化能力的新途径
1、项目介绍
在人工智能领域,模型的泛化能力至关重要。Deep-Mutual-Learning 是一个基于TensorFlow的开源实现,它提出了深度互学习(Deep Mutual Learning)的概念,旨在通过协同训练多个网络来增强每个网络的泛化能力。这个项目源自于2018年CVPR上发表的研究论文,并已被证明可以有效提高模型性能。
2、项目技术分析
Deep Mutual Learning的核心思想是让多个模型互相学习,彼此作为对方的监督源。如图所示,每个网络不仅从自己的损失函数中学习,还从其他网络中获得信息。这种相互依赖的关系促进了模型间的互补,提高了整个系统的整体表现。项目提供了Market-1501数据集上的示例代码,便于用户理解和实践这一创新方法。
3、项目及技术应用场景
深度互学习技术特别适用于需要高精度和泛化能力强的场景,例如:
- 图像识别:利用多模型协作可以更好地处理复杂和多样性的图像数据。
- 人脸识别:在大规模的人脸验证和识别任务中,可以减少误识率,提高准确度。
- 计算机视觉中的目标检测和跟踪:多个模型的并行处理能提供更全面的视觉理解。
尤其是对于资源受限的移动设备,通过Deep Mutual Learning训练的轻量级模型(如MobileNets)能在保持性能的同时降低计算开销。
4、项目特点
- 简单高效:只需要修改训练脚本即可实现深度互学习,易于集成到现有系统中。
- 协同优化:多个模型之间相互影响,共同提升,达到了单一模型难以企及的性能。
- 广泛兼容:支持TensorFlow 1.3.1,兼容CUDA 8.0和cuDNN 6.0,方便进行GPU加速。
- 数据友好:提供了数据预处理工具,便于将不同数据集转换为TFRecords格式。
为了进一步研究或应用这项技术,我们鼓励你尝试运行提供的训练和测试脚本,并在你的项目中体验深度互学习带来的效果。如果你的成果受益于此项目,请引用原始论文以支持作者的工作。
@inproceedings{ying2018DML,
author = {Ying Zhang and Tao Xiang and Timothy M. Hospedales and Huchuan Lu},
title = {Deep Mutual Learning},
booktitle = {CVPR},
year = {2018}}
加入深度互学习的探索之旅,开启提升模型性能的新篇章!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178