推荐文章:深度互学习——提升模型泛化能力的新途径
2024-05-21 11:42:56作者:农烁颖Land
推荐文章:深度互学习——提升模型泛化能力的新途径
1、项目介绍
在人工智能领域,模型的泛化能力至关重要。Deep-Mutual-Learning 是一个基于TensorFlow的开源实现,它提出了深度互学习(Deep Mutual Learning)的概念,旨在通过协同训练多个网络来增强每个网络的泛化能力。这个项目源自于2018年CVPR上发表的研究论文,并已被证明可以有效提高模型性能。
2、项目技术分析
Deep Mutual Learning的核心思想是让多个模型互相学习,彼此作为对方的监督源。如图所示,每个网络不仅从自己的损失函数中学习,还从其他网络中获得信息。这种相互依赖的关系促进了模型间的互补,提高了整个系统的整体表现。项目提供了Market-1501数据集上的示例代码,便于用户理解和实践这一创新方法。
3、项目及技术应用场景
深度互学习技术特别适用于需要高精度和泛化能力强的场景,例如:
- 图像识别:利用多模型协作可以更好地处理复杂和多样性的图像数据。
- 人脸识别:在大规模的人脸验证和识别任务中,可以减少误识率,提高准确度。
- 计算机视觉中的目标检测和跟踪:多个模型的并行处理能提供更全面的视觉理解。
尤其是对于资源受限的移动设备,通过Deep Mutual Learning训练的轻量级模型(如MobileNets)能在保持性能的同时降低计算开销。
4、项目特点
- 简单高效:只需要修改训练脚本即可实现深度互学习,易于集成到现有系统中。
- 协同优化:多个模型之间相互影响,共同提升,达到了单一模型难以企及的性能。
- 广泛兼容:支持TensorFlow 1.3.1,兼容CUDA 8.0和cuDNN 6.0,方便进行GPU加速。
- 数据友好:提供了数据预处理工具,便于将不同数据集转换为TFRecords格式。
为了进一步研究或应用这项技术,我们鼓励你尝试运行提供的训练和测试脚本,并在你的项目中体验深度互学习带来的效果。如果你的成果受益于此项目,请引用原始论文以支持作者的工作。
@inproceedings{ying2018DML,
author = {Ying Zhang and Tao Xiang and Timothy M. Hospedales and Huchuan Lu},
title = {Deep Mutual Learning},
booktitle = {CVPR},
year = {2018}}
加入深度互学习的探索之旅,开启提升模型性能的新篇章!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19