推荐文章:KDD2019-MEIRec - 意图推荐的元路径引导异质图神经网络
推荐文章:KDD2019-MEIRec - 意图推荐的元路径引导异质图神经网络
1、项目介绍
KDD2019-MEIRec 是一个在2019年KDD大会上发表的研究成果,它提出了一种利用元路径指导的异质图神经网络(Metapath-guided Heterogeneous Graph Neural Network)进行意图推荐的方法。该项目旨在解决传统推荐系统在理解和捕捉用户复杂意图上的局限性,通过深入探索数据中的异构关系,提供更精准和个性化的推荐。
2、项目技术分析
KDD2019-MEIRec的核心是构建并利用异质图来捕获不同实体之间的多元联系。它创新地引入了元路径的概念,以更好地理解用户和物品之间的关系。元路径是一种特定的路径模式,可以突出显示图中特定类型的关系。结合图神经网络,模型能够对节点(如用户和物品)进行嵌入学习,同时考虑到其周围环境的影响。这种深度学习方法使得模型能够挖掘隐藏在大规模数据下的深层模式,从而提高推荐的准确性和相关性。
3、项目及技术应用场景
KDD2019-MEIRec的适用场景广泛,特别适合那些拥有丰富用户行为数据和多类型实体的在线服务平台,例如电子商务网站、社交媒体平台或流媒体服务。通过理解用户的多样化意图,该模型可以为用户提供更加贴心的个性化推荐,如商品、文章、音乐或电影等,提升用户体验和满意度,同时促进平台的用户粘性和活跃度。
4、项目特点
-
异质图建模:KDD2019-MEIRec不仅仅考虑了用户与物品之间的连接,还考虑了不同类型实体间的关联,使推荐更全面。
-
元路径指导:通过元路径,模型能聚焦到特定的关系模式,增强对用户意图的理解。
-
图神经网络:运用GNN进行节点嵌入学习,捕捉复杂的局部结构信息,提升推荐精度。
-
易于实现:项目依赖于Tensorflow 1.1.0 和 Numpy 1.12.1,直接运行main.py即可开始训练模型。
如果你正在寻找一种能够深挖用户意图,提供高度定制化推荐的解决方案,那么KDD2019-MEIRec绝对值得你一试。现在就加入社区,探索这个强大的意图推荐系统吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00