推荐文章:KDD2019-MEIRec - 意图推荐的元路径引导异质图神经网络
推荐文章:KDD2019-MEIRec - 意图推荐的元路径引导异质图神经网络
1、项目介绍
KDD2019-MEIRec 是一个在2019年KDD大会上发表的研究成果,它提出了一种利用元路径指导的异质图神经网络(Metapath-guided Heterogeneous Graph Neural Network)进行意图推荐的方法。该项目旨在解决传统推荐系统在理解和捕捉用户复杂意图上的局限性,通过深入探索数据中的异构关系,提供更精准和个性化的推荐。
2、项目技术分析
KDD2019-MEIRec的核心是构建并利用异质图来捕获不同实体之间的多元联系。它创新地引入了元路径的概念,以更好地理解用户和物品之间的关系。元路径是一种特定的路径模式,可以突出显示图中特定类型的关系。结合图神经网络,模型能够对节点(如用户和物品)进行嵌入学习,同时考虑到其周围环境的影响。这种深度学习方法使得模型能够挖掘隐藏在大规模数据下的深层模式,从而提高推荐的准确性和相关性。
3、项目及技术应用场景
KDD2019-MEIRec的适用场景广泛,特别适合那些拥有丰富用户行为数据和多类型实体的在线服务平台,例如电子商务网站、社交媒体平台或流媒体服务。通过理解用户的多样化意图,该模型可以为用户提供更加贴心的个性化推荐,如商品、文章、音乐或电影等,提升用户体验和满意度,同时促进平台的用户粘性和活跃度。
4、项目特点
-
异质图建模:KDD2019-MEIRec不仅仅考虑了用户与物品之间的连接,还考虑了不同类型实体间的关联,使推荐更全面。
-
元路径指导:通过元路径,模型能聚焦到特定的关系模式,增强对用户意图的理解。
-
图神经网络:运用GNN进行节点嵌入学习,捕捉复杂的局部结构信息,提升推荐精度。
-
易于实现:项目依赖于Tensorflow 1.1.0 和 Numpy 1.12.1,直接运行main.py即可开始训练模型。
如果你正在寻找一种能够深挖用户意图,提供高度定制化推荐的解决方案,那么KDD2019-MEIRec绝对值得你一试。现在就加入社区,探索这个强大的意图推荐系统吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00