Scanpy项目中聚类树状图出现负距离问题的分析与解决
问题背景
在单细胞RNA测序数据分析中,Scanpy是一个广泛使用的Python工具包。近期,一些用户在使用Scanpy的sc.pl.rank_genes_groups_heatmap
函数时遇到了一个错误提示:"Linkage 'Z' contains negative distances."。这个问题出现在生成层次聚类树状图的过程中,影响了热图的可视化功能。
问题本质
这个错误的根本原因在于层次聚类过程中计算的距离矩阵中出现了负值。具体来说,当Scanpy计算聚类间的相关性矩阵时,由于浮点数精度问题,理论上应该等于1的相关性值在实际计算中可能略微超过1(如1.0000001)。当这些值被转换为距离时,就会产生负距离。
技术细节
在层次聚类过程中,Scanpy内部会执行以下步骤:
- 计算不同聚类之间的相关性矩阵
- 将相关性转换为距离(通常使用1-correlation)
- 基于距离矩阵构建层次聚类树状图
当相关性值大于1时,1-correlation就会变成负数,这违反了层次聚类算法的基本假设(距离必须为非负数)。
解决方案
Scanpy开发团队已经针对这个问题提出了修复方案。核心思路是在计算相关性矩阵后,对结果进行修正,确保所有值不超过1:
corr_matrix = mean_df.T.corr(method=cor_method)
corr_matrix = np.where(corr_matrix > 1, 1, corr_matrix)
这个简单的修正确保了相关性矩阵中的所有值都不会超过1,从而避免了负距离的出现。
实际应用
对于遇到此问题的用户,可以采用以下两种解决方案之一:
-
临时解决方案:手动修改本地安装的Scanpy代码,在
scanpy/tools/_dendrogram.py
文件中添加上述修正代码。 -
官方修复:安装包含此修复的Scanpy开发版本:
pip install git+https://github.com/scverse/scanpy.git@fix-dendro-corr
问题重现
开发团队还提供了一个最小化的重现示例,帮助用户理解和验证这个问题:
import scipy.sparse as sp
import numpy as np
import pandas as pd
import scanpy as sc
# 构建测试数据
rep_pca = np.array([...]) # 具体的PCA坐标数据
rep = sc.AnnData(
sp.csr_matrix(...), # 稀疏矩阵数据
dict(leiden=pd.Categorical(["372", "366", "357", "357", "357", "357", "357"])),
obsm=dict(X_pca=np.array(rep_pca, dtype=np.float32)),
)
sc.tl.dendrogram(rep, groupby="leiden")
总结
这个问题的出现揭示了在科学计算中处理浮点数精度问题的重要性。Scanpy团队的快速响应和修复展示了开源社区解决问题的效率。对于生物信息学分析人员来说,理解这类技术细节有助于更好地诊断和解决分析过程中遇到的问题,确保数据分析流程的顺利进行。
建议用户关注Scanpy的官方更新,及时获取包含此修复的稳定版本,以获得更可靠的分析结果。同时,这也提醒我们在开发类似的计算密集型分析工具时,需要特别注意数值计算的边界情况和精度问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









