PyStan 2.0 使用指南
2024-08-22 19:55:51作者:段琳惟
一、项目目录结构及介绍
PyStan 2.0 是基于 Python 的 Stan 模型接口,允许数据科学家和统计分析师使用贝叶斯统计模型进行分析。以下是该GitHub仓库的基本目录结构及其简介:
pystan2/
├── AUTHORS.md # 贡献者列表
├── CHANGELOG.md # 版本更新日志
├── CONTRIBUTING.md # 对贡献者的指导说明
├── Docs/ # 文档相关的资料或指引
│ ├── make.bat # Windows下的文档构建脚本
│ └── Makefile # 用于构建文档的Makefile
├── examples/ # 示例代码,展示如何使用PyStan创建模型
│ └── ...
├── pystan/ # 主要的源代码库
│ ├── __init__.py # 包初始化文件
│ ├── stansummary.py # Stan模型结果的总结工具
│ └── ... # 其它核心模块
├── setup.cfg # 配置文件,用于Python包的设置
├── setup.py # Python包的安装脚本
├── tests/ # 测试案例
│ └── ...
└── tox.ini # 用于多环境测试的Tox配置文件
项目的核心在于 pystan/ 目录,其中包含实现了Stan模型与Python交互的代码。examples/ 目录对初学者尤其重要,提供了多种应用场景下的模型实例。
二、项目的启动文件介绍
在PyStan中,并没有特定的“启动文件”如其他应用软件可能具有的单一体系入口。通常,用户的“启动”是从导入PyStan并开始编写或加载模型代码开始的。一个简单的示例是通过Python脚本开始工作,例如:
import pystan
stan_code = '''
parameters {
real<lower=0,upper=1> y;
}
model {
y ~ beta(2, 5);
}
'''
data = {'N': 10}
sm = pystan.StanModel(model_code=stan_code)
fit = sm.sampling(data=data)
print(fit)
上述代码引入了PyStan库,定义了一个简单的贝叶斯模型,编译模型,然后用数据采样运行模型。
三、项目的配置文件介绍
PyStan本身并不直接依赖于外部的配置文件来运行。其配置主要体现在两个方面:
- Python环境配置:安装PyStan通常需要正确配置Python环境(比如确保numpy和C++编译器可用),这更多地涉及到系统层面的设置而非文件形式的配置。
- 模型和数据的准备:虽然不严格意义上的配置文件,用户自定义的Python脚本或数据文件(如
.csv)可以视为间接的“配置”,它们定义了模型的行为和输入数据。
对于复杂的项目,用户可能会选择将模型参数、数据路径等信息存储在像.yaml这样的文件中,以便于管理,但这并非PyStan框架内置要求,完全取决于用户的具体需求和实践习惯。
请注意,本教程假定您已经了解基本的Python编程和贝叶斯统计概念。在实际使用PyStan时,深入阅读官方文档和示例代码将帮助您更有效地运用这一强大的工具。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146