Stan 开源项目教程
2024-09-14 17:39:15作者:幸俭卉
1. 项目介绍
Stan 是一个先进的统计建模和高性能统计计算平台。它被广泛应用于社会科学、生物学、物理学、工程学和商业等领域。Stan 提供了多种接口,支持 R、Python、shell、MATLAB、Julia 和 Stata 等流行数据分析语言,并且可以在 Linux、Mac 和 Windows 等主要平台上运行。
Stan 的核心功能包括:
- 全贝叶斯统计推断(MCMC 采样:NUTS-HMC)
- 近似贝叶斯推断(变分推断:Pathfinder 和 ADVI)
- 惩罚最大似然估计(优化)
Stan 的数学库提供了可微分的概率函数和线性代数(C++ 自动微分),并且有额外的 R 包支持基于表达式的线性建模、后验可视化和留一交叉验证。
2. 项目快速启动
安装 Stan
首先,确保你已经安装了 R 或 Python 环境。以下是使用 R 和 Python 安装 Stan 的步骤:
使用 R 安装 Stan
install.packages("rstan", repos = "https://cloud.r-project.org/", dependencies = TRUE)
使用 Python 安装 Stan
pip install pystan
编写第一个 Stan 模型
以下是一个简单的 Stan 模型示例,用于拟合一个线性回归模型:
data {
int<lower=0> N; // 数据点数量
vector[N] x; // 自变量
vector[N] y; // 因变量
}
parameters {
real alpha; // 截距
real beta; // 斜率
real<lower=0> sigma; // 误差标准差
}
model {
y ~ normal(alpha + beta * x, sigma);
}
运行 Stan 模型
在 R 中运行
library(rstan)
# 准备数据
data <- list(N = 100, x = rnorm(100), y = rnorm(100))
# 编译并运行模型
fit <- stan(file = 'linear_regression.stan', data = data)
# 查看结果
print(fit)
在 Python 中运行
import pystan
# 准备数据
data = {'N': 100, 'x': np.random.normal(size=100), 'y': np.random.normal(size=100)}
# 编译并运行模型
model = pystan.StanModel(file='linear_regression.stan')
fit = model.sampling(data=data)
# 查看结果
print(fit)
3. 应用案例和最佳实践
应用案例
Stan 在多个领域有广泛的应用,例如:
- 社会科学:用于社会调查数据的贝叶斯分析。
- 生物学:用于基因表达数据的统计建模。
- 物理学:用于粒子物理实验数据的贝叶斯推断。
最佳实践
- 模型验证:在实际应用中,确保模型的合理性和准确性非常重要。可以使用交叉验证和后验预测检查来验证模型。
- 参数初始化:合理初始化参数可以加速模型的收敛。
- 并行计算:利用 Stan 的并行计算功能可以显著提高计算效率。
4. 典型生态项目
Stan 生态系统中有多个相关的项目和工具,例如:
- RStan:Stan 的 R 接口,提供了丰富的 R 包支持。
- PyStan:Stan 的 Python 接口,适合 Python 用户使用。
- CmdStan:Stan 的命令行接口,适合高级用户和大规模计算。
- ShinyStan:一个交互式工具,用于可视化和探索 Stan 模型的后验分布。
这些工具和项目共同构成了一个强大的统计建模和计算生态系统,支持用户在不同场景下的需求。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58