OpenShift Cluster Monitoring Operator 使用教程
1. 项目介绍
1.1 项目概述
OpenShift Cluster Monitoring Operator 是一个用于管理和更新基于 Prometheus 的集群监控堆栈的开源项目。它部署在 OpenShift 集群之上,负责监控集群的核心组件,包括 Kubernetes 服务、Prometheus、Alertmanager 等。通过这个 Operator,用户可以轻松地监控集群的健康状态和性能指标。
1.2 主要功能
- Prometheus Operator: 管理 Prometheus 实例的创建、配置和生命周期。
- Alertmanager: 处理来自 Prometheus 的警报,并将其发送到外部通知系统。
- kube-state-metrics: 将 Kubernetes 对象转换为 Prometheus 可用的指标。
- node_exporter: 收集集群中每个节点的指标。
- kubernetes-metrics-server: 提供 Kubernetes 集群的资源使用情况。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你已经安装了以下工具:
- OpenShift CLI (
oc) - Git
2.2 克隆项目
首先,克隆 OpenShift Cluster Monitoring Operator 项目到本地:
git clone https://github.com/openshift/cluster-monitoring-operator.git
cd cluster-monitoring-operator
2.3 部署 Operator
使用以下命令部署 Cluster Monitoring Operator:
oc apply -f manifests/0000_50_cluster-monitoring-operator_04-deployment.yaml
2.4 验证部署
部署完成后,使用以下命令验证 Operator 是否正常运行:
oc get pods -n openshift-monitoring
你应该会看到类似以下的输出,表示 Operator 已经成功部署并运行:
NAME READY STATUS RESTARTS AGE
cluster-monitoring-operator-xxxxxx-xxxxx 1/1 Running 0 5m
3. 应用案例和最佳实践
3.1 监控用户定义的项目
OpenShift Cluster Monitoring Operator 不仅监控核心集群组件,还可以监控用户定义的项目。通过启用用户工作负载监控,用户可以轻松地设置新的 Prometheus 实例来监控和警报他们的应用程序。
3.2 自定义警报规则
用户可以根据自己的需求自定义警报规则。例如,可以创建一个新的警报规则来监控特定服务的响应时间:
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: custom-alert-rules
spec:
groups:
- name: custom-alerts
rules:
- alert: HighResponseTime
expr: http_request_duration_seconds_bucket{le="1"} > 0.8
for: 5m
labels:
severity: warning
annotations:
summary: "High response time detected"
description: "The response time for service {{ $labels.service }} is above 800ms for 5 minutes."
3.3 集成外部通知系统
Alertmanager 支持将警报发送到各种外部通知系统,如 Slack、PagerDuty 等。用户可以通过配置 Alertmanager 的 receivers 和 routes 来实现这一功能。
4. 典型生态项目
4.1 Prometheus
Prometheus 是 OpenShift Cluster Monitoring Operator 的核心组件,负责收集和存储时间序列数据。它提供了强大的查询语言和警报功能。
4.2 Grafana
Grafana 是一个开源的指标分析和可视化平台,通常与 Prometheus 一起使用,提供丰富的仪表盘和图表来展示监控数据。
4.3 Thanos
Thanos 是一个高可用的 Prometheus 扩展,提供全局查询视图、无限存储和跨集群的警报功能。
4.4 kube-state-metrics
kube-state-metrics 是一个简单的服务,它监听 Kubernetes API 并生成有关对象状态的指标。
通过这些生态项目的结合,用户可以构建一个强大且灵活的监控系统,满足各种复杂的监控需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00