OpenShift Cluster Monitoring Operator 使用教程
1. 项目介绍
1.1 项目概述
OpenShift Cluster Monitoring Operator 是一个用于管理和更新基于 Prometheus 的集群监控堆栈的开源项目。它部署在 OpenShift 集群之上,负责监控集群的核心组件,包括 Kubernetes 服务、Prometheus、Alertmanager 等。通过这个 Operator,用户可以轻松地监控集群的健康状态和性能指标。
1.2 主要功能
- Prometheus Operator: 管理 Prometheus 实例的创建、配置和生命周期。
- Alertmanager: 处理来自 Prometheus 的警报,并将其发送到外部通知系统。
- kube-state-metrics: 将 Kubernetes 对象转换为 Prometheus 可用的指标。
- node_exporter: 收集集群中每个节点的指标。
- kubernetes-metrics-server: 提供 Kubernetes 集群的资源使用情况。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你已经安装了以下工具:
- OpenShift CLI (
oc) - Git
2.2 克隆项目
首先,克隆 OpenShift Cluster Monitoring Operator 项目到本地:
git clone https://github.com/openshift/cluster-monitoring-operator.git
cd cluster-monitoring-operator
2.3 部署 Operator
使用以下命令部署 Cluster Monitoring Operator:
oc apply -f manifests/0000_50_cluster-monitoring-operator_04-deployment.yaml
2.4 验证部署
部署完成后,使用以下命令验证 Operator 是否正常运行:
oc get pods -n openshift-monitoring
你应该会看到类似以下的输出,表示 Operator 已经成功部署并运行:
NAME READY STATUS RESTARTS AGE
cluster-monitoring-operator-xxxxxx-xxxxx 1/1 Running 0 5m
3. 应用案例和最佳实践
3.1 监控用户定义的项目
OpenShift Cluster Monitoring Operator 不仅监控核心集群组件,还可以监控用户定义的项目。通过启用用户工作负载监控,用户可以轻松地设置新的 Prometheus 实例来监控和警报他们的应用程序。
3.2 自定义警报规则
用户可以根据自己的需求自定义警报规则。例如,可以创建一个新的警报规则来监控特定服务的响应时间:
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: custom-alert-rules
spec:
groups:
- name: custom-alerts
rules:
- alert: HighResponseTime
expr: http_request_duration_seconds_bucket{le="1"} > 0.8
for: 5m
labels:
severity: warning
annotations:
summary: "High response time detected"
description: "The response time for service {{ $labels.service }} is above 800ms for 5 minutes."
3.3 集成外部通知系统
Alertmanager 支持将警报发送到各种外部通知系统,如 Slack、PagerDuty 等。用户可以通过配置 Alertmanager 的 receivers 和 routes 来实现这一功能。
4. 典型生态项目
4.1 Prometheus
Prometheus 是 OpenShift Cluster Monitoring Operator 的核心组件,负责收集和存储时间序列数据。它提供了强大的查询语言和警报功能。
4.2 Grafana
Grafana 是一个开源的指标分析和可视化平台,通常与 Prometheus 一起使用,提供丰富的仪表盘和图表来展示监控数据。
4.3 Thanos
Thanos 是一个高可用的 Prometheus 扩展,提供全局查询视图、无限存储和跨集群的警报功能。
4.4 kube-state-metrics
kube-state-metrics 是一个简单的服务,它监听 Kubernetes API 并生成有关对象状态的指标。
通过这些生态项目的结合,用户可以构建一个强大且灵活的监控系统,满足各种复杂的监控需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00