OpenShift Cluster Monitoring Operator 使用教程
1. 项目介绍
1.1 项目概述
OpenShift Cluster Monitoring Operator 是一个用于管理和更新基于 Prometheus 的集群监控堆栈的开源项目。它部署在 OpenShift 集群之上,负责监控集群的核心组件,包括 Kubernetes 服务、Prometheus、Alertmanager 等。通过这个 Operator,用户可以轻松地监控集群的健康状态和性能指标。
1.2 主要功能
- Prometheus Operator: 管理 Prometheus 实例的创建、配置和生命周期。
- Alertmanager: 处理来自 Prometheus 的警报,并将其发送到外部通知系统。
- kube-state-metrics: 将 Kubernetes 对象转换为 Prometheus 可用的指标。
- node_exporter: 收集集群中每个节点的指标。
- kubernetes-metrics-server: 提供 Kubernetes 集群的资源使用情况。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你已经安装了以下工具:
- OpenShift CLI (
oc) - Git
2.2 克隆项目
首先,克隆 OpenShift Cluster Monitoring Operator 项目到本地:
git clone https://github.com/openshift/cluster-monitoring-operator.git
cd cluster-monitoring-operator
2.3 部署 Operator
使用以下命令部署 Cluster Monitoring Operator:
oc apply -f manifests/0000_50_cluster-monitoring-operator_04-deployment.yaml
2.4 验证部署
部署完成后,使用以下命令验证 Operator 是否正常运行:
oc get pods -n openshift-monitoring
你应该会看到类似以下的输出,表示 Operator 已经成功部署并运行:
NAME READY STATUS RESTARTS AGE
cluster-monitoring-operator-xxxxxx-xxxxx 1/1 Running 0 5m
3. 应用案例和最佳实践
3.1 监控用户定义的项目
OpenShift Cluster Monitoring Operator 不仅监控核心集群组件,还可以监控用户定义的项目。通过启用用户工作负载监控,用户可以轻松地设置新的 Prometheus 实例来监控和警报他们的应用程序。
3.2 自定义警报规则
用户可以根据自己的需求自定义警报规则。例如,可以创建一个新的警报规则来监控特定服务的响应时间:
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: custom-alert-rules
spec:
groups:
- name: custom-alerts
rules:
- alert: HighResponseTime
expr: http_request_duration_seconds_bucket{le="1"} > 0.8
for: 5m
labels:
severity: warning
annotations:
summary: "High response time detected"
description: "The response time for service {{ $labels.service }} is above 800ms for 5 minutes."
3.3 集成外部通知系统
Alertmanager 支持将警报发送到各种外部通知系统,如 Slack、PagerDuty 等。用户可以通过配置 Alertmanager 的 receivers 和 routes 来实现这一功能。
4. 典型生态项目
4.1 Prometheus
Prometheus 是 OpenShift Cluster Monitoring Operator 的核心组件,负责收集和存储时间序列数据。它提供了强大的查询语言和警报功能。
4.2 Grafana
Grafana 是一个开源的指标分析和可视化平台,通常与 Prometheus 一起使用,提供丰富的仪表盘和图表来展示监控数据。
4.3 Thanos
Thanos 是一个高可用的 Prometheus 扩展,提供全局查询视图、无限存储和跨集群的警报功能。
4.4 kube-state-metrics
kube-state-metrics 是一个简单的服务,它监听 Kubernetes API 并生成有关对象状态的指标。
通过这些生态项目的结合,用户可以构建一个强大且灵活的监控系统,满足各种复杂的监控需求。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00