Kubernetes Descheduler 服务配置与指标采集实践
2025-06-11 22:52:52作者:舒璇辛Bertina
背景介绍
Kubernetes Descheduler 是一个用于优化 Kubernetes 集群工作负载调度的工具,它通过重新平衡节点上的 Pod 分布来提高集群资源利用率。在实际生产环境中,监控 Descheduler 的运行状态和性能指标对于运维团队至关重要。
指标采集的常见挑战
许多团队使用 Datadog 等第三方监控工具来采集 Kubernetes 集群的指标数据。当这些工具尝试采集 Descheduler 的指标时,可能会遇到以下典型问题:
- 服务发现机制差异:Datadog 等工具通常通过 Service 来发现和采集 Pod 的指标
- Headless Service 限制:Descheduler 默认创建的 Headless Service(ClusterIP: None)不被某些监控工具支持
- 高可用模式下的指标采集:在 Descheduler 高可用部署时,需要确保只采集当前 Leader 的指标
解决方案分析
方案一:直接采集 Pod 指标
对于不支持 Headless Service 的监控系统,可以直接配置从 Pod 采集指标:
apiVersion: apps/v1
kind: Deployment
metadata:
name: descheduler
spec:
template:
metadata:
annotations:
ad.datadoghq.com/descheduler.checks: |
{
"openmetrics": {
"instances": [
{
"openmetrics_endpoint": "https://%%host%%:10258/metrics",
"namespace": "descheduler",
"metrics": [
"descheduler_pods_evicted",
{ "descheduler_descheduler_loop_duration_seconds": "descheduler_loop_duration_seconds" },
{ "descheduler_descheduler_strategy_duration_seconds": "descheduler_strategy_duration_seconds" }
],
"collect_histogram_buckets": true,
"histogram_buckets_as_distributions": true,
"tls_ca_cert": false,
"tls_verify": false,
"tls_ignore_warning": true
}
]
}
}
这种方式的优势在于:
- 不依赖 Service 发现机制
- 在高可用部署时,可以确保只采集当前 Leader Pod 的指标
- 配置灵活,可以精确控制采集哪些指标
方案二:修改 Service 类型
如果监控系统强制要求通过 Service 采集指标,可以修改 Descheduler 的 Service 配置:
apiVersion: v1
kind: Service
metadata:
name: descheduler-metrics
spec:
selector:
app: descheduler
ports:
- protocol: TCP
port: 10258
targetPort: 10258
type: ClusterIP
# 不设置 clusterIP: None
需要注意的是,这种方式在高可用部署时可能会导致指标采集不准确,因为请求会在多个 Pod 间轮询。
最佳实践建议
- 优先使用 Pod 注解方式:这是最可靠的方式,不受 Service 类型限制
- 关键指标监控:确保至少监控以下核心指标:
- Pod 驱逐数量(descheduler_pods_evicted)
- 调度循环持续时间(descheduler_loop_duration_seconds)
- 各策略执行时间(descheduler_strategy_duration_seconds)
- 安全配置:如果 Descheduler 启用了 TLS,需要在监控配置中正确处理证书验证
- 标签管理:为采集的指标添加适当的标签,便于后续分析和告警
总结
Kubernetes Descheduler 的指标采集可以根据实际监控系统的特性和集群部署方式选择不同的实现方案。理解这些方案的优缺点有助于运维团队构建稳定可靠的监控体系,确保能够及时发现和解决调度相关的问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882