Kubernetes Descheduler 服务配置与指标采集实践
2025-06-11 00:59:00作者:舒璇辛Bertina
背景介绍
Kubernetes Descheduler 是一个用于优化 Kubernetes 集群工作负载调度的工具,它通过重新平衡节点上的 Pod 分布来提高集群资源利用率。在实际生产环境中,监控 Descheduler 的运行状态和性能指标对于运维团队至关重要。
指标采集的常见挑战
许多团队使用 Datadog 等第三方监控工具来采集 Kubernetes 集群的指标数据。当这些工具尝试采集 Descheduler 的指标时,可能会遇到以下典型问题:
- 服务发现机制差异:Datadog 等工具通常通过 Service 来发现和采集 Pod 的指标
- Headless Service 限制:Descheduler 默认创建的 Headless Service(ClusterIP: None)不被某些监控工具支持
- 高可用模式下的指标采集:在 Descheduler 高可用部署时,需要确保只采集当前 Leader 的指标
解决方案分析
方案一:直接采集 Pod 指标
对于不支持 Headless Service 的监控系统,可以直接配置从 Pod 采集指标:
apiVersion: apps/v1
kind: Deployment
metadata:
name: descheduler
spec:
template:
metadata:
annotations:
ad.datadoghq.com/descheduler.checks: |
{
"openmetrics": {
"instances": [
{
"openmetrics_endpoint": "https://%%host%%:10258/metrics",
"namespace": "descheduler",
"metrics": [
"descheduler_pods_evicted",
{ "descheduler_descheduler_loop_duration_seconds": "descheduler_loop_duration_seconds" },
{ "descheduler_descheduler_strategy_duration_seconds": "descheduler_strategy_duration_seconds" }
],
"collect_histogram_buckets": true,
"histogram_buckets_as_distributions": true,
"tls_ca_cert": false,
"tls_verify": false,
"tls_ignore_warning": true
}
]
}
}
这种方式的优势在于:
- 不依赖 Service 发现机制
- 在高可用部署时,可以确保只采集当前 Leader Pod 的指标
- 配置灵活,可以精确控制采集哪些指标
方案二:修改 Service 类型
如果监控系统强制要求通过 Service 采集指标,可以修改 Descheduler 的 Service 配置:
apiVersion: v1
kind: Service
metadata:
name: descheduler-metrics
spec:
selector:
app: descheduler
ports:
- protocol: TCP
port: 10258
targetPort: 10258
type: ClusterIP
# 不设置 clusterIP: None
需要注意的是,这种方式在高可用部署时可能会导致指标采集不准确,因为请求会在多个 Pod 间轮询。
最佳实践建议
- 优先使用 Pod 注解方式:这是最可靠的方式,不受 Service 类型限制
- 关键指标监控:确保至少监控以下核心指标:
- Pod 驱逐数量(descheduler_pods_evicted)
- 调度循环持续时间(descheduler_loop_duration_seconds)
- 各策略执行时间(descheduler_strategy_duration_seconds)
- 安全配置:如果 Descheduler 启用了 TLS,需要在监控配置中正确处理证书验证
- 标签管理:为采集的指标添加适当的标签,便于后续分析和告警
总结
Kubernetes Descheduler 的指标采集可以根据实际监控系统的特性和集群部署方式选择不同的实现方案。理解这些方案的优缺点有助于运维团队构建稳定可靠的监控体系,确保能够及时发现和解决调度相关的问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
659
150
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
657
293
仓颉编译器源码及 cjdb 调试工具。
C++
131
865
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874