Kubernetes Descheduler 服务配置与指标采集实践
2025-06-11 13:20:25作者:舒璇辛Bertina
背景介绍
Kubernetes Descheduler 是一个用于优化 Kubernetes 集群工作负载调度的工具,它通过重新平衡节点上的 Pod 分布来提高集群资源利用率。在实际生产环境中,监控 Descheduler 的运行状态和性能指标对于运维团队至关重要。
指标采集的常见挑战
许多团队使用 Datadog 等第三方监控工具来采集 Kubernetes 集群的指标数据。当这些工具尝试采集 Descheduler 的指标时,可能会遇到以下典型问题:
- 服务发现机制差异:Datadog 等工具通常通过 Service 来发现和采集 Pod 的指标
- Headless Service 限制:Descheduler 默认创建的 Headless Service(ClusterIP: None)不被某些监控工具支持
- 高可用模式下的指标采集:在 Descheduler 高可用部署时,需要确保只采集当前 Leader 的指标
解决方案分析
方案一:直接采集 Pod 指标
对于不支持 Headless Service 的监控系统,可以直接配置从 Pod 采集指标:
apiVersion: apps/v1
kind: Deployment
metadata:
name: descheduler
spec:
template:
metadata:
annotations:
ad.datadoghq.com/descheduler.checks: |
{
"openmetrics": {
"instances": [
{
"openmetrics_endpoint": "https://%%host%%:10258/metrics",
"namespace": "descheduler",
"metrics": [
"descheduler_pods_evicted",
{ "descheduler_descheduler_loop_duration_seconds": "descheduler_loop_duration_seconds" },
{ "descheduler_descheduler_strategy_duration_seconds": "descheduler_strategy_duration_seconds" }
],
"collect_histogram_buckets": true,
"histogram_buckets_as_distributions": true,
"tls_ca_cert": false,
"tls_verify": false,
"tls_ignore_warning": true
}
]
}
}
这种方式的优势在于:
- 不依赖 Service 发现机制
- 在高可用部署时,可以确保只采集当前 Leader Pod 的指标
- 配置灵活,可以精确控制采集哪些指标
方案二:修改 Service 类型
如果监控系统强制要求通过 Service 采集指标,可以修改 Descheduler 的 Service 配置:
apiVersion: v1
kind: Service
metadata:
name: descheduler-metrics
spec:
selector:
app: descheduler
ports:
- protocol: TCP
port: 10258
targetPort: 10258
type: ClusterIP
# 不设置 clusterIP: None
需要注意的是,这种方式在高可用部署时可能会导致指标采集不准确,因为请求会在多个 Pod 间轮询。
最佳实践建议
- 优先使用 Pod 注解方式:这是最可靠的方式,不受 Service 类型限制
- 关键指标监控:确保至少监控以下核心指标:
- Pod 驱逐数量(descheduler_pods_evicted)
- 调度循环持续时间(descheduler_loop_duration_seconds)
- 各策略执行时间(descheduler_strategy_duration_seconds)
- 安全配置:如果 Descheduler 启用了 TLS,需要在监控配置中正确处理证书验证
- 标签管理:为采集的指标添加适当的标签,便于后续分析和告警
总结
Kubernetes Descheduler 的指标采集可以根据实际监控系统的特性和集群部署方式选择不同的实现方案。理解这些方案的优缺点有助于运维团队构建稳定可靠的监控体系,确保能够及时发现和解决调度相关的问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492