Kubernetes Descheduler 服务配置与指标采集实践
2025-06-11 13:20:25作者:舒璇辛Bertina
背景介绍
Kubernetes Descheduler 是一个用于优化 Kubernetes 集群工作负载调度的工具,它通过重新平衡节点上的 Pod 分布来提高集群资源利用率。在实际生产环境中,监控 Descheduler 的运行状态和性能指标对于运维团队至关重要。
指标采集的常见挑战
许多团队使用 Datadog 等第三方监控工具来采集 Kubernetes 集群的指标数据。当这些工具尝试采集 Descheduler 的指标时,可能会遇到以下典型问题:
- 服务发现机制差异:Datadog 等工具通常通过 Service 来发现和采集 Pod 的指标
- Headless Service 限制:Descheduler 默认创建的 Headless Service(ClusterIP: None)不被某些监控工具支持
- 高可用模式下的指标采集:在 Descheduler 高可用部署时,需要确保只采集当前 Leader 的指标
解决方案分析
方案一:直接采集 Pod 指标
对于不支持 Headless Service 的监控系统,可以直接配置从 Pod 采集指标:
apiVersion: apps/v1
kind: Deployment
metadata:
name: descheduler
spec:
template:
metadata:
annotations:
ad.datadoghq.com/descheduler.checks: |
{
"openmetrics": {
"instances": [
{
"openmetrics_endpoint": "https://%%host%%:10258/metrics",
"namespace": "descheduler",
"metrics": [
"descheduler_pods_evicted",
{ "descheduler_descheduler_loop_duration_seconds": "descheduler_loop_duration_seconds" },
{ "descheduler_descheduler_strategy_duration_seconds": "descheduler_strategy_duration_seconds" }
],
"collect_histogram_buckets": true,
"histogram_buckets_as_distributions": true,
"tls_ca_cert": false,
"tls_verify": false,
"tls_ignore_warning": true
}
]
}
}
这种方式的优势在于:
- 不依赖 Service 发现机制
- 在高可用部署时,可以确保只采集当前 Leader Pod 的指标
- 配置灵活,可以精确控制采集哪些指标
方案二:修改 Service 类型
如果监控系统强制要求通过 Service 采集指标,可以修改 Descheduler 的 Service 配置:
apiVersion: v1
kind: Service
metadata:
name: descheduler-metrics
spec:
selector:
app: descheduler
ports:
- protocol: TCP
port: 10258
targetPort: 10258
type: ClusterIP
# 不设置 clusterIP: None
需要注意的是,这种方式在高可用部署时可能会导致指标采集不准确,因为请求会在多个 Pod 间轮询。
最佳实践建议
- 优先使用 Pod 注解方式:这是最可靠的方式,不受 Service 类型限制
- 关键指标监控:确保至少监控以下核心指标:
- Pod 驱逐数量(descheduler_pods_evicted)
- 调度循环持续时间(descheduler_loop_duration_seconds)
- 各策略执行时间(descheduler_strategy_duration_seconds)
- 安全配置:如果 Descheduler 启用了 TLS,需要在监控配置中正确处理证书验证
- 标签管理:为采集的指标添加适当的标签,便于后续分析和告警
总结
Kubernetes Descheduler 的指标采集可以根据实际监控系统的特性和集群部署方式选择不同的实现方案。理解这些方案的优缺点有助于运维团队构建稳定可靠的监控体系,确保能够及时发现和解决调度相关的问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328