Django-Components 0.137版本发布:组件视图与缓存能力升级
项目简介
Django-Components是一个为Django框架提供组件化开发能力的扩展库。它允许开发者将前端模板、CSS样式和JavaScript逻辑封装成可复用的组件,从而提升Django项目的模块化程度和开发效率。通过组件化的方式,开发者可以构建更加清晰、可维护的Web界面。
版本核心更新
组件视图处理方式改进
在0.137版本中,对组件视图处理器的定义方式进行了重要调整。原先允许直接在Component类上定义get()、post()等HTTP方法的方式已被标记为废弃,推荐开发者将这些方法移至Component.View嵌套类中。
旧方式(已废弃):
class MyComponent(Component):
def get(self, request):
return self.render_to_response()
新推荐方式:
class MyComponent(Component):
class View:
def get(self, request):
return self.render_to_response()
这一改变使得组件结构更加清晰,视图相关逻辑集中管理,符合Django的类视图设计理念。对于现有项目,建议逐步迁移到新的定义方式,以避免未来版本升级时出现兼容性问题。
组件类唯一标识符
新版本引入了class_id属性,为每个Component子类提供唯一标识。这与实例级别的id属性不同,后者是针对每个渲染实例的。
开发者可以通过新增的get_component_by_class_id()函数,根据class_id查找对应的组件类。这一特性为组件管理和动态加载提供了更多可能性。
简化的URL配置
0.137版本显著简化了组件视图的URL配置流程。通过在组件中设置Component.Url.public = True,可以自动为组件创建URL路由,无需手动调用as_view()和配置urlpatterns。
配置示例:
class MyComponent(Component):
class Url:
public = True
...
获取组件URL时,只需使用get_component_url(MyComponent)函数即可。这种方式使组件URL管理更加集中,减少了与主URL配置的耦合。
组件级缓存机制
这是一个重要的新特性,允许开发者为单个组件配置缓存。通过设置Component.Cache.enabled = True,可以启用组件输出缓存,后续相同输入的渲染将直接返回缓存结果。
缓存配置示例:
class TestComponent(Component):
template = "Hello"
class Cache:
enabled = True
ttl = 0.1 # 缓存存活时间(秒)
cache_name = "custom_cache" # 可选自定义缓存后端
# 自定义缓存键生成方法
def hash(self, *args, **kwargs):
return f"{json.dumps(args)}:{json.dumps(kwargs)}"
组件缓存特别适用于渲染开销大但变化不频繁的组件,能显著提升页面响应速度。开发者可以精细控制每个组件的缓存策略,包括TTL、使用的缓存后端以及如何生成缓存键。
其他改进
- 测试工具
@djc_test现在更加智能,无需手动调用django.setup()即可使用 - 公开了
ComponentInput类型,为组件输入提供更好的类型提示支持 get_context_data()方法现在可以省略return语句或返回None,使用更加灵活
升级建议
对于正在使用Django-Components的项目,建议:
- 逐步将视图处理器迁移到Component.View嵌套类中
- 评估组件缓存的使用场景,对性能关键组件启用缓存
- 考虑使用新的URL配置方式简化路由管理
- 利用class_id特性改进组件查找逻辑
0.137版本为Django-Components带来了更加完善的组件化开发生态,特别是在视图处理和性能优化方面提供了更多可能性,值得开发者关注和升级。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00