Chaquopy:Android 上的 Python SDK 使用教程
1. 项目介绍
Chaquopy 是一个用于 Android 应用开发的 Python SDK,它允许开发者在 Android 应用中集成 Python 代码。Chaquopy 提供了完整的工具链,包括与 Android Studio 的标准 Gradle 构建系统的完全集成、从 Java/Kotlin 调用 Python 代码的简单 API,以及对大量第三方 Python 包的支持,如 SciPy、OpenCV、TensorFlow 等。
Chaquopy 的主要特点包括:
- 完全集成:与 Android Studio 的 Gradle 构建系统无缝集成。
- 简单 API:提供从 Java/Kotlin 调用 Python 代码的简单接口。
- 广泛支持:支持包括 SciPy、OpenCV、TensorFlow 等在内的众多第三方 Python 包。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你已经安装了以下工具:
- Android Studio
- Python 3.x
2.2 项目配置
-
创建新项目: 打开 Android Studio,创建一个新的 Android 项目。
-
添加 Chaquopy 依赖: 在项目的
settings.gradle
文件中添加以下内容:dependencyResolutionManagement { repositories { maven { url "https://chaquo.com/maven" } } }
在
build.gradle
文件中添加 Chaquopy 插件:plugins { id 'com.chaquo.python' version '12.0.0' apply false }
-
配置 Python 环境: 在
app/build.gradle
文件中添加以下内容:android { defaultConfig { ndk { abiFilters "armeabi-v7a", "arm64-v8a", "x86", "x86_64" } python { buildPython "python3" pip { install "requests" } } } }
-
创建 Python 文件: 在
src/main
目录下创建一个名为python
的目录,并在其中创建一个hello.py
文件,内容如下:def say_hello(): print("Hello from Python!")
-
在 Java/Kotlin 中调用 Python 代码: 在
MainActivity.java
或MainActivity.kt
中添加以下代码:if (!Python.isStarted()) { Python.start(new AndroidPlatform(this)); } Python python = Python.getInstance(); PyObject pyObject = python.getModule("hello"); pyObject.callAttr("say_hello");
-
运行项目: 点击 Android Studio 中的运行按钮,启动应用。你将在 Logcat 中看到 Python 输出的 "Hello from Python!"。
3. 应用案例和最佳实践
3.1 数据处理与分析
Chaquopy 可以用于在 Android 应用中进行复杂的数据处理和分析。例如,使用 Pandas 进行数据清洗和分析,使用 Matplotlib 进行数据可视化。
3.2 机器学习模型部署
通过 Chaquopy,开发者可以将训练好的机器学习模型(如 TensorFlow 或 PyTorch 模型)集成到 Android 应用中,实现实时预测和推理功能。
3.3 自动化测试
Chaquopy 还可以用于编写自动化测试脚本,结合 Appium 等工具,实现对 Android 应用的自动化测试。
4. 典型生态项目
4.1 SciPy
SciPy 是一个用于科学计算的 Python 库,Chaquopy 支持在 Android 应用中使用 SciPy 进行科学计算和数据分析。
4.2 OpenCV
OpenCV 是一个开源的计算机视觉库,Chaquopy 允许在 Android 应用中集成 OpenCV,实现图像处理和计算机视觉功能。
4.3 TensorFlow
TensorFlow 是一个广泛使用的机器学习框架,Chaquopy 支持在 Android 应用中集成 TensorFlow,实现机器学习和深度学习功能。
通过以上步骤,你可以快速上手并使用 Chaquopy 在 Android 应用中集成 Python 代码,实现丰富的功能和应用场景。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++089Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









