AlphaFold3中模拟蛋白质单泛素化修饰的结构预测方法
2025-06-03 01:46:44作者:袁立春Spencer
概述
AlphaFold3作为DeepMind推出的最新蛋白质结构预测工具,在蛋白质翻译后修饰(PTM)预测方面展现出强大能力。本文将详细介绍如何利用AlphaFold3预测蛋白质单泛素化修饰对蛋白质结构的影响,包括技术原理、实现方法和注意事项。
单泛素化修饰的建模挑战
单泛素化是一种重要的蛋白质翻译后修饰,涉及76个氨基酸的泛素分子通过异肽键连接到靶蛋白的特定赖氨酸残基上。在AlphaFold3中建模这一过程面临两个主要技术难点:
- 聚合物间连接限制:当前版本不支持直接定义蛋白质链之间的共价连接
- 修饰残基缺失:CCD数据库中缺乏泛素化赖氨酸的标准化学组分代码
解决方案与实现方法
方法一:将末端残基作为配体处理
-
基本原理:将泛素链的C端甘氨酸(Gly76)视为配体,而非蛋白质链的一部分
-
实现步骤:
- 将泛素序列(1-75位)定义为标准蛋白质链
- 将第76位甘氨酸单独定义为配体(使用GLY的CCD代码)
- 设置两个关键化学键:
- 配体(Gly76)的羧基碳与靶蛋白赖氨酸的Nζ原子连接
- 配体(Gly76)的氨基氮与泛素链第75位残基的羧基碳连接
-
输入文件示例:
{
"sequences": [
{"proteinChain": {"id": "A", "sequence": "靶蛋白序列"}},
{"proteinChain": {"id": "B", "sequence": "泛素1-75序列"}},
{"ligand": {"id": "C", "ligand": "CCD_GLY"}}
],
"bondedAtomPairs": [
[["C", 1, "C"], ["A", 380, "NZ"]],
[["C", 1, "N"], ["B", 75, "C"]]
]
}
方法二:自定义修饰残基
-
基本原理:创建自定义的泛素化赖氨酸残基作为PTM
-
实现步骤:
- 准备泛素化赖氨酸的化学组分描述文件
- 在输入文件中指定该自定义修饰
- 将靶蛋白中的特定赖氨酸标记为该PTM
-
技术要点:
- 需要准确定义异肽键的原子连接
- 需包含修饰残基的完整立体化学信息
- 建议保留原始赖氨酸的原子布局以提高预测准确性
注意事项与优化建议
-
结构模板使用:对于已知结构的区域,建议启用useStructureTemplate参数以提高预测质量
-
多模型集成:设置多个modelSeeds以获得更可靠的预测结果
-
后处理验证:预测完成后应检查:
- 异肽键的几何合理性
- 泛素分子的空间取向
- 修饰位点周围的局部构象变化
-
性能考量:
- 复杂系统可能需要更长的采样时间
- 大蛋白体系建议使用高内存配置
应用前景
该方法不仅适用于单泛素化研究,还可扩展至其他类似的蛋白质-蛋白质共价连接系统,如SUMO化、NEDD化等翻译后修饰的模拟预测。通过准确预测修饰后的结构变化,研究人员可以更好地理解这些修饰对蛋白质功能的影响机制。
随着AlphaFold3工具的不断完善,相信未来版本会提供更直接的聚合物间连接支持,使这类重要生物学问题的模拟变得更加简便高效。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322