AlphaFold3中模拟蛋白质单泛素化修饰的结构预测方法
2025-06-03 11:57:41作者:袁立春Spencer
概述
AlphaFold3作为DeepMind推出的最新蛋白质结构预测工具,在蛋白质翻译后修饰(PTM)预测方面展现出强大能力。本文将详细介绍如何利用AlphaFold3预测蛋白质单泛素化修饰对蛋白质结构的影响,包括技术原理、实现方法和注意事项。
单泛素化修饰的建模挑战
单泛素化是一种重要的蛋白质翻译后修饰,涉及76个氨基酸的泛素分子通过异肽键连接到靶蛋白的特定赖氨酸残基上。在AlphaFold3中建模这一过程面临两个主要技术难点:
- 聚合物间连接限制:当前版本不支持直接定义蛋白质链之间的共价连接
- 修饰残基缺失:CCD数据库中缺乏泛素化赖氨酸的标准化学组分代码
解决方案与实现方法
方法一:将末端残基作为配体处理
-
基本原理:将泛素链的C端甘氨酸(Gly76)视为配体,而非蛋白质链的一部分
-
实现步骤:
- 将泛素序列(1-75位)定义为标准蛋白质链
- 将第76位甘氨酸单独定义为配体(使用GLY的CCD代码)
- 设置两个关键化学键:
- 配体(Gly76)的羧基碳与靶蛋白赖氨酸的Nζ原子连接
- 配体(Gly76)的氨基氮与泛素链第75位残基的羧基碳连接
-
输入文件示例:
{
"sequences": [
{"proteinChain": {"id": "A", "sequence": "靶蛋白序列"}},
{"proteinChain": {"id": "B", "sequence": "泛素1-75序列"}},
{"ligand": {"id": "C", "ligand": "CCD_GLY"}}
],
"bondedAtomPairs": [
[["C", 1, "C"], ["A", 380, "NZ"]],
[["C", 1, "N"], ["B", 75, "C"]]
]
}
方法二:自定义修饰残基
-
基本原理:创建自定义的泛素化赖氨酸残基作为PTM
-
实现步骤:
- 准备泛素化赖氨酸的化学组分描述文件
- 在输入文件中指定该自定义修饰
- 将靶蛋白中的特定赖氨酸标记为该PTM
-
技术要点:
- 需要准确定义异肽键的原子连接
- 需包含修饰残基的完整立体化学信息
- 建议保留原始赖氨酸的原子布局以提高预测准确性
注意事项与优化建议
-
结构模板使用:对于已知结构的区域,建议启用useStructureTemplate参数以提高预测质量
-
多模型集成:设置多个modelSeeds以获得更可靠的预测结果
-
后处理验证:预测完成后应检查:
- 异肽键的几何合理性
- 泛素分子的空间取向
- 修饰位点周围的局部构象变化
-
性能考量:
- 复杂系统可能需要更长的采样时间
- 大蛋白体系建议使用高内存配置
应用前景
该方法不仅适用于单泛素化研究,还可扩展至其他类似的蛋白质-蛋白质共价连接系统,如SUMO化、NEDD化等翻译后修饰的模拟预测。通过准确预测修饰后的结构变化,研究人员可以更好地理解这些修饰对蛋白质功能的影响机制。
随着AlphaFold3工具的不断完善,相信未来版本会提供更直接的聚合物间连接支持,使这类重要生物学问题的模拟变得更加简便高效。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K