AlphaFold3中模拟蛋白质单泛素化修饰的结构预测方法
2025-06-03 20:29:51作者:袁立春Spencer
概述
AlphaFold3作为DeepMind推出的最新蛋白质结构预测工具,在蛋白质翻译后修饰(PTM)预测方面展现出强大能力。本文将详细介绍如何利用AlphaFold3预测蛋白质单泛素化修饰对蛋白质结构的影响,包括技术原理、实现方法和注意事项。
单泛素化修饰的建模挑战
单泛素化是一种重要的蛋白质翻译后修饰,涉及76个氨基酸的泛素分子通过异肽键连接到靶蛋白的特定赖氨酸残基上。在AlphaFold3中建模这一过程面临两个主要技术难点:
- 聚合物间连接限制:当前版本不支持直接定义蛋白质链之间的共价连接
- 修饰残基缺失:CCD数据库中缺乏泛素化赖氨酸的标准化学组分代码
解决方案与实现方法
方法一:将末端残基作为配体处理
-
基本原理:将泛素链的C端甘氨酸(Gly76)视为配体,而非蛋白质链的一部分
-
实现步骤:
- 将泛素序列(1-75位)定义为标准蛋白质链
- 将第76位甘氨酸单独定义为配体(使用GLY的CCD代码)
- 设置两个关键化学键:
- 配体(Gly76)的羧基碳与靶蛋白赖氨酸的Nζ原子连接
- 配体(Gly76)的氨基氮与泛素链第75位残基的羧基碳连接
-
输入文件示例:
{
"sequences": [
{"proteinChain": {"id": "A", "sequence": "靶蛋白序列"}},
{"proteinChain": {"id": "B", "sequence": "泛素1-75序列"}},
{"ligand": {"id": "C", "ligand": "CCD_GLY"}}
],
"bondedAtomPairs": [
[["C", 1, "C"], ["A", 380, "NZ"]],
[["C", 1, "N"], ["B", 75, "C"]]
]
}
方法二:自定义修饰残基
-
基本原理:创建自定义的泛素化赖氨酸残基作为PTM
-
实现步骤:
- 准备泛素化赖氨酸的化学组分描述文件
- 在输入文件中指定该自定义修饰
- 将靶蛋白中的特定赖氨酸标记为该PTM
-
技术要点:
- 需要准确定义异肽键的原子连接
- 需包含修饰残基的完整立体化学信息
- 建议保留原始赖氨酸的原子布局以提高预测准确性
注意事项与优化建议
-
结构模板使用:对于已知结构的区域,建议启用useStructureTemplate参数以提高预测质量
-
多模型集成:设置多个modelSeeds以获得更可靠的预测结果
-
后处理验证:预测完成后应检查:
- 异肽键的几何合理性
- 泛素分子的空间取向
- 修饰位点周围的局部构象变化
-
性能考量:
- 复杂系统可能需要更长的采样时间
- 大蛋白体系建议使用高内存配置
应用前景
该方法不仅适用于单泛素化研究,还可扩展至其他类似的蛋白质-蛋白质共价连接系统,如SUMO化、NEDD化等翻译后修饰的模拟预测。通过准确预测修饰后的结构变化,研究人员可以更好地理解这些修饰对蛋白质功能的影响机制。
随着AlphaFold3工具的不断完善,相信未来版本会提供更直接的聚合物间连接支持,使这类重要生物学问题的模拟变得更加简便高效。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869