Async-profiler中JVM僵尸方法访问导致的致命错误分析
问题现象
在使用async-profiler进行Java应用性能分析时,可能会遇到JVM致命错误,错误信息显示"unsafe access to zombie method"。这个错误通常发生在async-profiler尝试获取调用栈信息时,JVM检测到对已卸载方法(zombie method)的不安全访问。
错误日志中关键信息包括:
- 错误类型:Internal Error (codeCache.cpp:669)
- 错误描述:guarantee(is_result_safe || is_in_asgct()) failed
- 线程状态:JavaThread "I/O dispatcher 103" [_thread_in_Java]
- 调用栈显示错误发生在CodeCache::find_blob方法中
根本原因
深入分析发现,这个问题源于JDK 17u版本中的一个设计缺陷。在JavaThread类中存在两个不同的_in_asgct字段:
- 继承自Thread父类的_in_asgct字段
- JavaThread自身定义的_in_asgct字段
当async-profiler通过AsyncGetCallTrace接口获取调用栈时,JVM会设置其中一个_in_asgct标志位,但在安全检查时却检查了另一个标志位。这种不一致导致即使确实处于AsyncGetCallTrace调用上下文中,JVM仍然错误地认为这是对僵尸方法的不安全访问,从而触发致命错误。
解决方案
针对这个问题,有以下几种解决方案:
-
升级JDK:Oracle已经在JDK 17u后续版本中修复了这个问题,修复了_in_asgct标志位检查不一致的问题。
-
修改async-profiler配置:
- 使用
--cstack dwarf
选项:这会改变调用栈采集方式,减少触发该错误的概率 - 使用
--cstack vm
选项:这是更彻底的解决方案,从async-profiler 4.0开始将成为推荐配置
- 使用
-
避免长时间分析:由于该问题更容易在长时间分析后出现,可以尝试缩短单次分析时长,改为多次短时间分析。
技术背景
要理解这个问题的本质,需要了解几个关键概念:
-
僵尸方法(Zombie Method):当Java方法被卸载后,JVM不会立即清除所有相关数据结构,而是将其标记为"僵尸"状态,等待安全时机关联资源。
-
AsyncGetCallTrace:这是JVM提供的一个非标准接口,允许在不停止线程的情况下异步获取Java调用栈。async-profiler等工具依赖此接口实现低开销的分析。
-
CodeCache:JVM用来存储编译后机器代码的内存区域,find_blob方法用于在此区域查找与特定地址对应的代码块。
最佳实践
为了避免类似问题,建议在使用async-profiler时:
- 尽量使用最新版本的JDK和async-profiler
- 对于生产环境,优先考虑
--cstack vm
选项 - 监控分析过程中的JVM日志,及时发现潜在问题
- 对于关键业务系统,先在测试环境验证分析配置
这个问题展示了JVM内部实现细节如何影响性能分析工具的稳定性,也提醒我们在使用底层接口时需要特别注意边界条件和实现细节。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









