Async-profiler中JVM僵尸方法访问导致的致命错误分析
问题现象
在使用async-profiler进行Java应用性能分析时,可能会遇到JVM致命错误,错误信息显示"unsafe access to zombie method"。这个错误通常发生在async-profiler尝试获取调用栈信息时,JVM检测到对已卸载方法(zombie method)的不安全访问。
错误日志中关键信息包括:
- 错误类型:Internal Error (codeCache.cpp:669)
- 错误描述:guarantee(is_result_safe || is_in_asgct()) failed
- 线程状态:JavaThread "I/O dispatcher 103" [_thread_in_Java]
- 调用栈显示错误发生在CodeCache::find_blob方法中
根本原因
深入分析发现,这个问题源于JDK 17u版本中的一个设计缺陷。在JavaThread类中存在两个不同的_in_asgct字段:
- 继承自Thread父类的_in_asgct字段
- JavaThread自身定义的_in_asgct字段
当async-profiler通过AsyncGetCallTrace接口获取调用栈时,JVM会设置其中一个_in_asgct标志位,但在安全检查时却检查了另一个标志位。这种不一致导致即使确实处于AsyncGetCallTrace调用上下文中,JVM仍然错误地认为这是对僵尸方法的不安全访问,从而触发致命错误。
解决方案
针对这个问题,有以下几种解决方案:
-
升级JDK:Oracle已经在JDK 17u后续版本中修复了这个问题,修复了_in_asgct标志位检查不一致的问题。
-
修改async-profiler配置:
- 使用
--cstack dwarf选项:这会改变调用栈采集方式,减少触发该错误的概率 - 使用
--cstack vm选项:这是更彻底的解决方案,从async-profiler 4.0开始将成为推荐配置
- 使用
-
避免长时间分析:由于该问题更容易在长时间分析后出现,可以尝试缩短单次分析时长,改为多次短时间分析。
技术背景
要理解这个问题的本质,需要了解几个关键概念:
-
僵尸方法(Zombie Method):当Java方法被卸载后,JVM不会立即清除所有相关数据结构,而是将其标记为"僵尸"状态,等待安全时机关联资源。
-
AsyncGetCallTrace:这是JVM提供的一个非标准接口,允许在不停止线程的情况下异步获取Java调用栈。async-profiler等工具依赖此接口实现低开销的分析。
-
CodeCache:JVM用来存储编译后机器代码的内存区域,find_blob方法用于在此区域查找与特定地址对应的代码块。
最佳实践
为了避免类似问题,建议在使用async-profiler时:
- 尽量使用最新版本的JDK和async-profiler
- 对于生产环境,优先考虑
--cstack vm选项 - 监控分析过程中的JVM日志,及时发现潜在问题
- 对于关键业务系统,先在测试环境验证分析配置
这个问题展示了JVM内部实现细节如何影响性能分析工具的稳定性,也提醒我们在使用底层接口时需要特别注意边界条件和实现细节。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00