DeepSparse项目中ONNX模型类别预测错误的解决方案
2025-06-26 05:22:43作者:董斯意
问题背景
在使用DeepSparse进行YOLOv8模型推理时,开发者遇到了一个典型的类别预测错误问题。具体表现为:当使用自定义数据集训练模型并转换为ONNX格式后,模型在推理时会错误地按照COCO数据集的原始类别进行预测,而不是开发者自定义的类别。
问题分析
该问题的核心在于模型转换和推理过程中的类别映射机制。开发者训练模型时使用了自定义数据集,类别定义如下:
- Bus
- Car
- Cycle
- Cycle-Rickshaw
- Goods-Auto Mini-Truck
- Motorcycle
- Passengers-Auto
- Person
- Truck
然而在转换为ONNX格式并使用DeepSparse推理时,模型却按照COCO数据集的原始类别进行预测。例如,自定义数据集中"Person"类别在COCO数据集中对应位置可能是"Boat",导致模型将人物预测为船只。
解决方案
经过排查,发现问题出在DeepSparse的类别映射文件上。具体解决方法如下:
-
定位到DeepSparse安装目录下的类别定义文件:
./Deepspare/venv/lib/python3.9/site-packages/deepsparse/yolo/utils/coco_classes.py -
修改该文件中的类别定义,使其与自定义数据集的类别顺序和名称完全一致
技术原理
这个问题的本质是模型转换和推理框架之间的类别映射不一致。YOLO模型在训练时会记录类别信息,但在转换为ONNX格式时,这些信息可能不会自动保留。DeepSparse在推理时默认使用内置的COCO类别定义,因此导致了类别错位。
最佳实践建议
- 模型转换时:确保导出ONNX模型时包含完整的类别信息
- 推理框架配置:在使用第三方推理框架时,检查其默认类别定义是否与训练时一致
- 版本控制:对类别定义文件进行版本管理,确保训练和推理环境的一致性
- 验证流程:在模型转换后,使用简单的测试样本验证类别预测是否正确
总结
这个问题展示了深度学习模型从训练到部署过程中可能遇到的一个典型挑战——环境配置的一致性。通过修改DeepSparse的类别定义文件,开发者成功解决了ONNX模型推理时的类别错位问题。这提醒我们在模型部署过程中,不仅要关注模型结构本身的转换,还需要注意辅助信息(如类别定义)的同步。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178