FunASR项目中使用paraformer_streaming训练ONNX模型导出及推理问题解析
2025-05-24 23:43:56作者:范靓好Udolf
在语音识别领域,FunASR作为一个开源的语音识别工具包,提供了多种模型训练和推理方案。本文将重点分析在使用paraformer_streaming模型进行训练后,导出ONNX模型并在C++环境下运行时遇到的段错误问题及其解决方案。
问题现象
开发者在FunASR 1.0.19版本环境下,使用paraformer_streaming模型进行微调训练后,尝试将模型导出为ONNX格式。当使用funasr-onnx-online-asr工具进行推理测试时,程序在FunASRInferBuffer推理函数处发生了段错误(Segmentation Fault)。值得注意的是,使用官方提供的预训练模型(speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online-onnx)则能正常运行。
环境配置
问题出现的环境配置如下:
- 操作系统:Ubuntu 22.04
- FunASR版本:1.0.19
- PyTorch版本:2.2.1
- Python版本:3.10
- ONNX版本:1.15.0
- ONNX Runtime版本:1.17.1
问题排查过程
通过GDB调试工具分析,发现段错误发生在模型推理阶段。进一步排查发现,问题的根源在于模型导出时缺少了必要的词汇表(tokens)信息。在FunASR中,词汇表信息对于模型的正确运行至关重要,特别是在处理语音识别任务时,它定义了模型能够识别的所有可能字符或子词单元。
解决方案
解决此问题的关键在于确保模型导出时包含完整的配置信息。具体步骤如下:
- 在训练完成后,确保config.yaml文件中包含完整的tokens信息
- 使用以下命令导出模型时,系统会自动将必要信息写入config.yaml:
model="outputs"
python -m funasr.bin.export \
++model=${model} \
++type="onnx" \
++quantize=true \
++device="cpu" \
++debug=false
- 手动检查导出的config.yaml文件,确认其中包含tokens字段及其对应值
经验总结
- 模型导出时,不仅要关注模型结构本身的转换,还需要确保所有相关配置信息的完整性
- 对于语音识别模型,词汇表信息是模型能够正确运行的关键要素之一
- 当遇到类似段错误时,可以优先检查模型输入输出是否符合预期,以及所有依赖的配置文件是否完整
- 对比官方预训练模型和自己训练模型的配置文件差异,往往能快速定位问题所在
最佳实践建议
为了避免类似问题的发生,建议开发者在模型训练和导出过程中:
- 始终保留完整的训练配置信息
- 在导出模型前,验证模型配置文件的完整性
- 建立模型导出后的验证流程,包括配置文件检查
- 对于关键模型参数,考虑在代码中添加必要的验证逻辑
- 保持开发环境和生产环境的一致性,特别是ONNX和ONNX Runtime的版本匹配
通过以上分析和解决方案,开发者可以避免在使用FunASR进行paraformer_streaming模型训练和ONNX导出时遇到的段错误问题,确保模型能够顺利部署到生产环境中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669