FunASR项目中使用paraformer_streaming训练ONNX模型导出及推理问题解析
2025-05-24 18:52:30作者:范靓好Udolf
在语音识别领域,FunASR作为一个开源的语音识别工具包,提供了多种模型训练和推理方案。本文将重点分析在使用paraformer_streaming模型进行训练后,导出ONNX模型并在C++环境下运行时遇到的段错误问题及其解决方案。
问题现象
开发者在FunASR 1.0.19版本环境下,使用paraformer_streaming模型进行微调训练后,尝试将模型导出为ONNX格式。当使用funasr-onnx-online-asr工具进行推理测试时,程序在FunASRInferBuffer推理函数处发生了段错误(Segmentation Fault)。值得注意的是,使用官方提供的预训练模型(speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online-onnx)则能正常运行。
环境配置
问题出现的环境配置如下:
- 操作系统:Ubuntu 22.04
- FunASR版本:1.0.19
- PyTorch版本:2.2.1
- Python版本:3.10
- ONNX版本:1.15.0
- ONNX Runtime版本:1.17.1
问题排查过程
通过GDB调试工具分析,发现段错误发生在模型推理阶段。进一步排查发现,问题的根源在于模型导出时缺少了必要的词汇表(tokens)信息。在FunASR中,词汇表信息对于模型的正确运行至关重要,特别是在处理语音识别任务时,它定义了模型能够识别的所有可能字符或子词单元。
解决方案
解决此问题的关键在于确保模型导出时包含完整的配置信息。具体步骤如下:
- 在训练完成后,确保config.yaml文件中包含完整的tokens信息
- 使用以下命令导出模型时,系统会自动将必要信息写入config.yaml:
model="outputs"
python -m funasr.bin.export \
++model=${model} \
++type="onnx" \
++quantize=true \
++device="cpu" \
++debug=false
- 手动检查导出的config.yaml文件,确认其中包含tokens字段及其对应值
经验总结
- 模型导出时,不仅要关注模型结构本身的转换,还需要确保所有相关配置信息的完整性
- 对于语音识别模型,词汇表信息是模型能够正确运行的关键要素之一
- 当遇到类似段错误时,可以优先检查模型输入输出是否符合预期,以及所有依赖的配置文件是否完整
- 对比官方预训练模型和自己训练模型的配置文件差异,往往能快速定位问题所在
最佳实践建议
为了避免类似问题的发生,建议开发者在模型训练和导出过程中:
- 始终保留完整的训练配置信息
- 在导出模型前,验证模型配置文件的完整性
- 建立模型导出后的验证流程,包括配置文件检查
- 对于关键模型参数,考虑在代码中添加必要的验证逻辑
- 保持开发环境和生产环境的一致性,特别是ONNX和ONNX Runtime的版本匹配
通过以上分析和解决方案,开发者可以避免在使用FunASR进行paraformer_streaming模型训练和ONNX导出时遇到的段错误问题,确保模型能够顺利部署到生产环境中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1