Apache DataFusion 中 ListingTable 统计信息合并的缺陷分析
2025-05-31 00:03:36作者:仰钰奇
问题背景
在 Apache DataFusion 项目中,ListingTable 在处理不同模式(schema)的数据文件时,其统计信息合并机制存在一个潜在缺陷。这个缺陷会影响查询优化器的决策准确性,特别是在处理具有不同列顺序或列组成的文件时。
问题本质
当前实现中,ListingTable 在合并多个文件的统计信息时,仅根据列的位置(ordinal position)进行合并,而没有考虑列的实际语义。这种简单的按位置合并会导致以下问题:
- 当两个文件的列顺序不同时,统计信息会被错误地合并
- 当文件模式与表模式不一致时,统计信息会失去准确性
- 随着项目对统计信息依赖的增加,这种错误可能导致更严重的后果
具体案例
假设我们有两个数据文件:
- 文件1:模式为 (a int32, b int32)
- 文件2:模式为 (b int32, a int32)
当前实现会将文件1的列a统计信息与文件2的列b统计信息合并,因为它们处于相同的位置(第一个位置)。这显然是不正确的,因为实际上应该将相同逻辑列的统计信息合并在一起。
技术影响
这种统计信息合并错误会影响:
- 查询优化器的决策质量
- 分区裁剪的准确性
- 数据过滤的效率
- 资源预估的精确度
随着项目发展,统计信息正被用于更多关键路径,如确保查询结果的正确性,这使得修复这一问题变得更加紧迫。
解决方案方向
解决这一问题需要考虑以下几个方面:
- 模式映射:需要建立文件模式与表模式之间的正确映射关系
- 缺失处理:对于表模式中存在但文件模式中不存在的列,应使用未知统计信息填充
- 一致性保证:确保统计信息合并方式与实际数据读取方式一致
一个可行的方案是重用现有的 SchemaMapper 机制,这样可以保证统计信息处理与实际运行时行为保持一致。
实施建议
- 添加模式映射功能,正确关联文件列与表列
- 完善统计信息合并前的预处理步骤
- 增加全面的测试用例,覆盖各种模式不匹配场景
- 考虑性能影响,确保解决方案不会引入显著开销
总结
DataFusion 中 ListingTable 的统计信息合并问题是一个典型的模式处理缺陷。随着项目对统计信息依赖的增加,修复这一问题变得尤为重要。通过引入正确的模式映射机制,可以确保统计信息的准确合并,为后续的查询优化提供可靠基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178