OCTIS 项目使用教程
1. 项目介绍
OCTIS(Optimizing and Comparing Topic models Is Simple)是一个用于训练、分析和比较主题模型的 Python 包。它旨在通过贝叶斯优化方法估计主题模型的最优超参数。OCTIS 集成了多种经典和神经网络主题模型,并提供了多种评估指标,帮助研究人员和从业者在多个基准数据集上进行公平的模型比较。
2. 项目快速启动
安装 OCTIS
首先,确保你已经安装了 Python 环境。然后,使用 pip 安装 OCTIS:
pip install octis
加载预处理数据集
OCTIS 提供了多种预处理数据集,你可以直接加载使用。以下是一个加载 20NewsGroup 数据集的示例:
from octis.dataset.dataset import Dataset
dataset = Dataset()
dataset.fetch_dataset("20NewsGroup")
训练主题模型
接下来,我们使用 LDA 模型来训练主题模型。首先加载数据集,然后设置模型参数并训练模型:
from octis.models.LDA import LDA
model = LDA(num_topics=25)
model_output = model.train_model(dataset)
评估模型
使用 OCTIS 提供的评估指标来评估模型的性能。以下是一个使用 TopicDiversity 指标的示例:
from octis.evaluation_metrics.diversity_metrics import TopicDiversity
metric = TopicDiversity(topk=10)
topic_diversity_score = metric.score(model_output)
print(f"Topic Diversity Score: {topic_diversity_score}")
3. 应用案例和最佳实践
案例1:新闻主题建模
在新闻数据集上使用 OCTIS 进行主题建模,可以帮助我们理解不同新闻类别的主要话题。通过调整模型的超参数,可以优化模型的性能,从而更好地捕捉新闻数据中的主题结构。
案例2:文本分类
OCTIS 不仅可以用于主题建模,还可以用于文本分类任务。通过训练不同的主题模型,并结合分类算法,可以提高文本分类的准确性。
最佳实践
- 数据预处理:在使用 OCTIS 之前,确保数据已经过适当的预处理,包括去除停用词、词干化等。
- 超参数优化:使用 OCTIS 提供的贝叶斯优化功能,自动寻找最优的超参数配置。
- 模型比较:在多个数据集上比较不同的主题模型,选择最适合当前任务的模型。
4. 典型生态项目
Gensim
Gensim 是一个用于主题建模和自然语言处理的 Python 库,OCTIS 中集成了 Gensim 中的多个主题模型,如 LDA、LSI 和 NMF。
Contextualized Topic Models
Contextualized Topic Models 是一个用于上下文主题建模的 Python 库,OCTIS 中集成了 CTM 模型,可以用于处理包含上下文信息的文本数据。
PyTorch
PyTorch 是一个深度学习框架,OCTIS 中的一些神经网络主题模型(如 NeuralLDA 和 ProdLda)基于 PyTorch 实现,提供了强大的模型训练和优化能力。
通过结合这些生态项目,OCTIS 可以为用户提供更丰富的功能和更灵活的使用方式。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00