dplyr中distinct()函数的数据掩码与选择机制解析
dplyr作为R语言中最受欢迎的数据处理包之一,其distinct()函数在数据去重操作中扮演着重要角色。然而,许多用户在使用过程中会遇到一个常见困惑:为什么distinct()不能直接使用tidyselect选择器(如contains()、starts_with()等)?本文将深入探讨这一设计决策背后的技术原理。
数据掩码与tidyselect的本质区别
dplyr中的函数主要分为两大类:支持数据掩码(data-masking)的函数和支持tidyselect的函数。数据掩码函数如mutate()、filter()和distinct()等,它们允许直接引用数据框中的列名,就像在R环境中工作一样。而tidyselect函数如select(),则使用专门的语法来选择列。
distinct()被设计为数据掩码函数而非tidyselect函数,这一决策源于其功能定位。distinct()的核心行为更接近于mutate()而非select(),它需要处理列值而不仅仅是列名。这种设计保持了dplyr内部的一致性,尽管从用户角度看,distinct()似乎更像是一个选择操作。
pick()函数的桥梁作用
为了解决在数据掩码环境中使用tidyselect选择器的需求,dplyr引入了pick()函数。pick()充当了数据掩码和tidyselect之间的桥梁,允许在mutate()、summarise()等函数内部使用select()的选择语法。
在distinct()中使用pick()的示例如下:
iris %>%
distinct(pick(contains("Petal")))
这种设计模式在dplyr中很常见,例如在mutate()中使用across()结合tidyselect选择器也是类似的思路。
设计决策的深层考量
将distinct()设计为数据掩码函数有几个重要原因:
-
一致性原则:distinct()的行为与group_by()类似,两者都需要基于列值进行操作,而不仅仅是列名选择。
-
技术实现简化:混合支持数据掩码和tidyselect会增加函数内部的复杂性,可能导致难以预料的行为边界和错误。
-
历史兼容性:这一设计决策在dplyr早期就已确定,改变会影响大量现有代码。
替代方案与最佳实践
对于习惯使用tidyselect语法的用户,除了使用pick()外,还可以考虑以下模式:
- 预选列再去重:
iris %>%
select(contains("Petal")) %>%
distinct()
- 使用across():
iris %>%
distinct(across(contains("Petal")))
理解dplyr的这一设计哲学有助于用户更有效地使用整个tidyverse生态系统。虽然初看起来可能不够直观,但这种明确区分数据掩码和tidyselect的设计实际上提高了代码的可靠性和一致性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0117
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00