QwenLM/Qwen3项目中实现流式响应的RetrievalQA链技术解析
2025-05-11 13:17:16作者:尤辰城Agatha
概述
在QwenLM/Qwen3项目中,开发者经常需要构建基于大语言模型的问答系统,其中RetrievalQA链是一个核心组件。本文将深入探讨如何在该项目中实现带有流式响应功能的RetrievalQA链,特别关注如何集成CallbackManagerForLLMRun来实现高效的响应流处理。
核心组件分析
自定义Qwen语言模型类
项目中首先定义了一个自定义的Qwen语言模型类,继承自langchain的LLM基类。这个类封装了Qwen2-7B-Instruct模型的核心功能:
- 模型初始化:使用AutoModelForCausalLM和AutoTokenizer加载预训练模型
- 参数配置:包括max_token、temperature、top_p等生成参数
- 历史对话管理:通过history_len控制对话历史长度
流式响应实现关键
实现流式响应的核心在于TextIteratorStreamer的使用,这是transformers库提供的流式输出工具。关键技术点包括:
- 流式生成器初始化:在_call方法中创建TextIteratorStreamer实例
- 异步生成线程:使用独立线程运行模型生成过程,避免阻塞主线程
- 响应流处理:通过迭代streamer对象逐步获取生成结果
实现方案演进
初始方案中,开发者直接使用模型的generate方法一次性获取完整响应。改进后的方案引入了以下优化:
- 流式处理架构:将生成过程与响应输出解耦
- 线程安全设计:使用Python的Thread类管理生成过程
- 回调管理:预留了run_manager参数用于集成CallbackManagerForLLMRun
完整实现代码解析
class MainPipeline(LLM):
# 初始化流式生成器和模型参数
streamer: Optional[TextIteratorStreamer] = None
max_token: int = 10000
temperature: float = 0.01
top_p = 0.95
def _call(self, prompt, stop=None, run_manager=None) -> str:
# 获取模型和分词器
model, tokenizer = PipelineManager.get_pipeline(settings.MODEL_ID)
# 初始化流式生成器
self.streamer = TextIteratorStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# 准备模型输入
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages, tokenize=False)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
# 在独立线程中运行生成过程
def generate(**kwargs):
with torch.no_grad():
model.generate(**kwargs)
thread = Thread(target=generate, kwargs={
"input_ids": model_inputs["input_ids"],
"streamer": self.streamer,
"max_new_tokens": self.max_token,
"do_sample": True,
"top_p": self.top_p,
"temperature": self.temperature,
})
thread.start()
return "" # 实际响应通过streamer获取
RetrievalQA链集成
将自定义流式模型集成到RetrievalQA链中需要注意:
- 链初始化:使用from_chain_type方法创建QA链
- 检索器配置:基于FAISS向量库构建文档检索系统
- 提示模板设计:动态生成适合不同场景的提示词
def initialise_model(self):
# 准备提示模板
formatted_prompt = self.prompting_based_on_type()
# 创建RetrievalQA链
qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=self.get_create_vector_data(),
verbose=True,
chain_type_kwargs={"prompt": formatted_prompt}
)
return qa_chain, self.llm
流式响应处理
在实际使用时,通过迭代streamer对象逐步获取响应:
qa_chain, llm = self.initialise_model()
result = qa_chain.run(query=question)
# 流式处理响应
result = ""
if llm.streamer is not None:
while True:
try:
new_text = next(llm.streamer)
print(new_text, end="", flush=True)
result += new_text
except StopIteration:
break
await asyncio.sleep(0) # 允许其他协程运行
性能优化建议
- 批处理优化:对于多个并发请求,考虑使用模型批处理
- 缓存机制:对常见问题实现响应缓存
- 资源管理:合理控制max_token和history_len平衡效果与资源消耗
- 错误处理:增强流式处理过程中的异常捕获和恢复机制
总结
在QwenLM/Qwen3项目中实现流式响应的RetrievalQA链,关键在于正确集成transformers的流式生成功能与langchain的链式处理架构。本文介绍的方法不仅保持了问答系统的检索增强特性,还通过流式输出显著提升了用户体验。开发者可以根据实际需求调整生成参数和流式处理逻辑,构建更高效的问答系统。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.22 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258