首页
/ HyperLib: 在双曲空间中进行深度学习的开源库

HyperLib: 在双曲空间中进行深度学习的开源库

2024-09-21 04:44:16作者:邬祺芯Juliet

1. 项目介绍

HyperLib 是一个开源的 Python 库,它使得在双曲空间中创建新一代的神经网络变得简单。与欧几里得空间相比,双曲空间具有更大的容量,能够容纳更广泛的数据类型。双曲几何特别适用于具有潜在层次结构的数据。此外,越来越多的研究证明,使用双曲模型而非欧几里得模型来模拟大脑具有优势。HyperLib 通过抽象复杂的数学运算,使得双曲网络与使用 pip 安装一样简单。

2. 项目快速启动

首先,您需要安装 HyperLib。推荐使用 pip 进行安装:

pip install hyperlib

以下是一个使用 Keras 创建双曲神经网络的简单例子:

import tensorflow as tf
from tensorflow import keras
from hyperlib.nn.layers.lin_hyp import LinearHyperbolic
from hyperlib.nn.optimizers.rsgd import RSGD
from hyperlib.manifold.poincare import Poincare

# 创建双曲层
hyperbolic_layer_1 = LinearHyperbolic(32, Poincare(), 1)
hyperbolic_layer_2 = LinearHyperbolic(32, Poincare(), 1)
output_layer = LinearHyperbolic(10, Poincare(), 1)

# 创建优化器
optimizer = RSGD(learning_rate=0.1)

# 创建模型结构
model = tf.keras.models.Sequential([
    hyperbolic_layer_1,
    hyperbolic_layer_2,
    output_layer
])

# 编译模型
model.compile(
    optimizer=optimizer,
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]
)

3. 应用案例和最佳实践

双曲空间的一个显著优势是它能有效地表示层次数据。以下是一个使用 HyperLib 将数据嵌入双曲空间的例子:

import numpy as np
from hyperlib.embedding.treerep import treerep
from hyperlib.embedding.sarkar import sarkar_embedding

# 示例:8种哺乳动物的免疫学距离
compressed_metric = np.array([
    [32, 48, 51, 50, 48, 98, 148, 26],
    [34, 29, 33, 84, 136, 42, 44, 44],
    [92, 152, 44, 38, 86, 142, 42, 89],
    [142, 42, 89, 142, 90, 142, 148]
])

# 输出一个加权网络图
tree = treerep(compressed_metric, return_networkx=True)

# 在2D双曲空间中嵌入树
root = 0
embedding = sarkar_embedding(tree, root, tau=0.5)

4. 典型生态项目

目前,双曲空间在深度学习中的应用还处于发展阶段,但已有一些项目开始探索和利用双曲空间的特性。以下是一些典型的生态项目:

  • Hyperbolic Graph Convolutional Neural Networks:这是一种用于图数据的双曲神经网络,可以有效地处理具有层次结构的数据。
  • Poincaré Embeddings for Learning Hierarchical Representations:这个项目使用 Poincaré 模型来学习层次表示,适用于有层次结构的复杂数据。

通过以上介绍,我们希望您能对 HyperLib 有了基本的了解,并开始尝试在双曲空间中进行深度学习。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
611
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
383
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0