HyperLib: 在双曲空间中进行深度学习的开源库
2024-09-21 08:05:02作者:邬祺芯Juliet
1. 项目介绍
HyperLib 是一个开源的 Python 库,它使得在双曲空间中创建新一代的神经网络变得简单。与欧几里得空间相比,双曲空间具有更大的容量,能够容纳更广泛的数据类型。双曲几何特别适用于具有潜在层次结构的数据。此外,越来越多的研究证明,使用双曲模型而非欧几里得模型来模拟大脑具有优势。HyperLib 通过抽象复杂的数学运算,使得双曲网络与使用 pip 安装一样简单。
2. 项目快速启动
首先,您需要安装 HyperLib。推荐使用 pip 进行安装:
pip install hyperlib
以下是一个使用 Keras 创建双曲神经网络的简单例子:
import tensorflow as tf
from tensorflow import keras
from hyperlib.nn.layers.lin_hyp import LinearHyperbolic
from hyperlib.nn.optimizers.rsgd import RSGD
from hyperlib.manifold.poincare import Poincare
# 创建双曲层
hyperbolic_layer_1 = LinearHyperbolic(32, Poincare(), 1)
hyperbolic_layer_2 = LinearHyperbolic(32, Poincare(), 1)
output_layer = LinearHyperbolic(10, Poincare(), 1)
# 创建优化器
optimizer = RSGD(learning_rate=0.1)
# 创建模型结构
model = tf.keras.models.Sequential([
hyperbolic_layer_1,
hyperbolic_layer_2,
output_layer
])
# 编译模型
model.compile(
optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]
)
3. 应用案例和最佳实践
双曲空间的一个显著优势是它能有效地表示层次数据。以下是一个使用 HyperLib 将数据嵌入双曲空间的例子:
import numpy as np
from hyperlib.embedding.treerep import treerep
from hyperlib.embedding.sarkar import sarkar_embedding
# 示例:8种哺乳动物的免疫学距离
compressed_metric = np.array([
[32, 48, 51, 50, 48, 98, 148, 26],
[34, 29, 33, 84, 136, 42, 44, 44],
[92, 152, 44, 38, 86, 142, 42, 89],
[142, 42, 89, 142, 90, 142, 148]
])
# 输出一个加权网络图
tree = treerep(compressed_metric, return_networkx=True)
# 在2D双曲空间中嵌入树
root = 0
embedding = sarkar_embedding(tree, root, tau=0.5)
4. 典型生态项目
目前,双曲空间在深度学习中的应用还处于发展阶段,但已有一些项目开始探索和利用双曲空间的特性。以下是一些典型的生态项目:
- Hyperbolic Graph Convolutional Neural Networks:这是一种用于图数据的双曲神经网络,可以有效地处理具有层次结构的数据。
- Poincaré Embeddings for Learning Hierarchical Representations:这个项目使用 Poincaré 模型来学习层次表示,适用于有层次结构的复杂数据。
通过以上介绍,我们希望您能对 HyperLib 有了基本的了解,并开始尝试在双曲空间中进行深度学习。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217