双流行动识别:UCF101数据集上的深度学习解决方案
2024-09-21 13:23:20作者:袁立春Spencer
一、项目介绍
two-stream-action-recognition
是一个基于深度学习的动作识别项目。本项目采用了空间流和运动流CNN(卷积神经网络)模型,结合 ResNet101 结构对视频信息进行建模,旨在在 UCF101 数据集上实现高效准确的动作识别。
二、项目技术分析
本项目参考了以下论文中的技术方法:
项目在数据处理、模型构建、训练策略和测试方法等方面进行了细致的设计:
数据处理
项目从 UCF101 数据集中提取 RGB 帧和光流数据,以构建空间流和运动流的输入。RGB 帧以 10 帧的采样率保存为图片,而光流数据则通过两种方法获取:直接下载预处理的 TVL1 光流数据集,或使用 flownet2.0 方法生成。
模型构建
项目使用了预训练的 ResNet101 模型,对空间流 RGB 图像和运动流光流图像进行特征提取。在运动流中,输入是包含 10 个 x 通道和 10 个 y 通道图像的堆叠,需修改第一层卷积核的权重以适应输入形状。
训练策略
项目采用了时空片段网络的技术,对每个视频的帧进行随机选择和共识推理,以计算损失。同时,对数据进行了增强,如随机裁剪等。
测试方法
在测试阶段,项目对每个视频均匀采样 19 帧进行预测,通过投票得出视频级别的预测结果。
三、项目及应用场景
two-stream-action-recognition
适用于视频内容分析、行为识别等领域。特别是在体育视频分析、安全监控、人机交互等场景中,能够实现对视频中动作的快速准确识别。
四、项目特点
- 双流设计:同时利用空间信息和运动信息,提高动作识别的准确性。
- 预训练模型:使用 ImageNet 预训练的 ResNet101 模型,减少训练时间,提高模型性能。
- 数据增强:采用随机裁剪等数据增强技术,增强模型的泛化能力。
- 高效测试:通过投票机制,确保测试阶段的高效性和准确性。
欢迎感兴趣的开发者尝试和使用 two-stream-action-recognition
项目,共同推进视频动作识别技术的发展。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5