Apache DevLake v1.0.2-beta6版本发布:数据采集与治理能力再升级
Apache DevLake作为一款开源的数据湖平台,专注于为开发者提供高效、灵活的数据采集、转换和分析能力。该项目通过统一的接口和标准化的数据处理流程,帮助团队整合来自不同工具和系统的数据,为软件研发效能度量提供有力支撑。最新发布的v1.0.2-beta6版本带来了一系列功能增强和问题修复,进一步提升了系统的稳定性和可用性。
核心功能改进
本次版本在多个插件和功能模块上进行了优化。Zentao插件新增了对issue-repo-commit数据的采集能力,使得禅道系统中的问题与代码仓库提交记录能够建立更完整的关联关系。Customize插件则增加了对增量CSV上传的支持,为用户提供了更灵活的数据导入方式。StarRocks插件通过添加表配置功能,增强了与这一高性能分析型数据库的集成能力。
数据采集质量提升
在数据采集方面,开发团队修复了多个关键问题。GitLab插件解决了合并请求(MR)注释丢失的问题,确保了代码审查数据的完整性。Jira插件优化了冲刺(sprint)数据的采集逻辑,修复了开始日期为空的情况。Opsgenie插件则完善了问题分配者信息的采集,增加了AssigneeId和AssigneeName字段,使事件管理数据更加完整。
系统稳定性增强
本次更新特别关注了系统的稳定性问题。框架层修复了PostgreSQL数据库中更新is_failed字段时的错误问题,提升了数据库操作的可靠性。任务收集器增加了分页支持,有效防止大数据量场景下的性能问题。TAPD插件解决了在计算前置时间(lead time)分钟数时的溢出问题,确保了度量指标的准确性。
部署与配置优化
在部署和配置方面,v1.0.2-beta6版本也做出了多项改进。Makefile中的go-dep命令现在包含版本前缀,使依赖管理更加规范。Zentao连接配置增加了不可缓存标记,防止了潜在的连接问题。环境变量示例文件(env.example)也进行了更新,为用户提供了更全面的配置参考。
总结
Apache DevLake v1.0.2-beta6版本通过功能增强和问题修复,进一步提升了数据采集的全面性和系统运行的稳定性。这些改进使得平台能够更好地服务于研发效能度量的需求,为团队提供更准确、更完整的数据支持。作为beta阶段的版本,它也为即将到来的正式版奠定了坚实的基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00