Apache DevLake v1.0.2-beta6版本发布:数据采集与分析能力再升级
Apache DevLake作为一款开源的数据湖平台,致力于为开发者提供高效、灵活的数据采集与分析解决方案。该项目通过统一的接口和标准化的数据处理流程,帮助团队从各类开发工具中提取有价值的数据,为软件研发效能提升提供数据支撑。
最新发布的v1.0.2-beta6版本带来了多项功能增强和问题修复,进一步提升了平台的稳定性和可用性。本次更新主要聚焦于数据采集的完整性和准确性,同时对多个插件的功能进行了优化。
在数据采集方面,该版本为Zentao插件新增了issue-repo-commit数据收集功能,完善了研发数据链路。同时修复了GitLab MR notes缺失的问题,确保了代码评审数据的完整性。对于Jira和TAPD插件,也进行了多项数据采集逻辑的优化,包括sprint数据的时间处理、lead time分钟数的溢出问题等。
平台框架层面,本次更新解决了PostgreSQL数据库中更新is_failed状态时的错误问题,增强了数据库操作的稳定性。同时优化了job_collector任务的性能,增加了分页支持,提升了大规模数据处理的效率。
在插件功能方面,Customize插件现在支持增量CSV上传功能,为用户提供了更灵活的数据导入方式。StarRocks插件新增了表配置支持,增强了与StarRocks数据库的集成能力。Opsgenie插件则扩展了Assignee信息的采集维度,丰富了告警管理数据。
从技术实现角度看,这些改进体现了DevLake团队对数据质量和系统稳定性的持续关注。通过修复边界条件处理、优化数据库操作、增强错误处理机制等措施,使平台能够更好地应对各种复杂场景下的数据采集需求。
对于使用DevLake进行研发效能分析的用户而言,v1.0.2-beta6版本提供了更可靠的数据基础和更丰富的分析维度。特别是对Zentao、Jira、GitLab等常用工具的支持改进,将直接提升这些场景下的数据分析质量。
该版本仍处于预发布状态,建议用户在测试环境中先行验证,待稳定后再应用于生产环境。随着这些改进的逐步稳定,DevLake平台的数据采集与分析能力将得到进一步提升,为研发团队的决策支持提供更强大的数据支撑。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00