Apache DevLake v1.0.2-beta6版本发布:数据采集与分析能力再升级
Apache DevLake作为一款开源的数据湖平台,致力于为开发者提供高效、灵活的数据采集与分析解决方案。该项目通过统一的接口和标准化的数据处理流程,帮助团队从各类开发工具中提取有价值的数据,为软件研发效能提升提供数据支撑。
最新发布的v1.0.2-beta6版本带来了多项功能增强和问题修复,进一步提升了平台的稳定性和可用性。本次更新主要聚焦于数据采集的完整性和准确性,同时对多个插件的功能进行了优化。
在数据采集方面,该版本为Zentao插件新增了issue-repo-commit数据收集功能,完善了研发数据链路。同时修复了GitLab MR notes缺失的问题,确保了代码评审数据的完整性。对于Jira和TAPD插件,也进行了多项数据采集逻辑的优化,包括sprint数据的时间处理、lead time分钟数的溢出问题等。
平台框架层面,本次更新解决了PostgreSQL数据库中更新is_failed状态时的错误问题,增强了数据库操作的稳定性。同时优化了job_collector任务的性能,增加了分页支持,提升了大规模数据处理的效率。
在插件功能方面,Customize插件现在支持增量CSV上传功能,为用户提供了更灵活的数据导入方式。StarRocks插件新增了表配置支持,增强了与StarRocks数据库的集成能力。Opsgenie插件则扩展了Assignee信息的采集维度,丰富了告警管理数据。
从技术实现角度看,这些改进体现了DevLake团队对数据质量和系统稳定性的持续关注。通过修复边界条件处理、优化数据库操作、增强错误处理机制等措施,使平台能够更好地应对各种复杂场景下的数据采集需求。
对于使用DevLake进行研发效能分析的用户而言,v1.0.2-beta6版本提供了更可靠的数据基础和更丰富的分析维度。特别是对Zentao、Jira、GitLab等常用工具的支持改进,将直接提升这些场景下的数据分析质量。
该版本仍处于预发布状态,建议用户在测试环境中先行验证,待稳定后再应用于生产环境。随着这些改进的逐步稳定,DevLake平台的数据采集与分析能力将得到进一步提升,为研发团队的决策支持提供更强大的数据支撑。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00