解决stable-diffusion-webui-directml项目中AMD显卡无法识别的问题
问题背景
在使用stable-diffusion-webui-directml项目时,许多AMD显卡用户(特别是RX 7800 XT、RX 6600等型号)遇到了"Torch is not able to use GPU"的错误提示。这个问题主要出现在Windows系统环境下,Linux系统通常可以正常工作。
问题表现
当用户尝试启动stable-diffusion-webui时,控制台会显示以下错误信息:
RuntimeError: Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check
根本原因
这个问题源于PyTorch无法正确识别AMD显卡的DirectML支持。项目需要特定的配置才能让AMD显卡在Windows环境下正常工作。
解决方案
方法一:添加DirectML支持
- 编辑
requirements_versions.txt文件,添加或确保包含以下内容:
torch-directml
- 在项目根目录下打开命令提示符,执行以下命令:
.\venv\scripts\activate
pip install -r requirements.txt
- 如果遇到httpx相关错误,可以尝试:
pip install httpx==0.24.1
- 修改
webui-user.bat文件,在COMMANDLINE_ARGS中添加:
--use-directml
方法二:完整配置示例
对于AMD RX 6650XT等显卡,以下配置已被证实有效:
set COMMANDLINE_ARGS=--use-directml --medvram --no-half --precision full --no-half-vae --opt-sub-quad-attention --opt-split-attention-v1 --autolaunch
方法三:针对特定硬件的优化配置
对于AMD Ryzen 7900X CPU和RX 6700显卡的组合,可以使用以下配置:
set COMMANDLINE_ARGS=--opt-sub-quad-attention --lowvram --disable-nan-check --use-directml
注意事项
-
确保项目文件夹名称为
stable-diffusion-webui-directml,而不是stable-diffusion-webui,这有助于避免混淆。 -
如果遇到DLL加载错误(如"Could not load library cudnn_cnn_infer64_8.dll"),这可能是由于系统环境问题导致的,建议检查系统路径和依赖项。
-
对于新手用户,建议按照以下步骤操作:
- 下载正确的项目版本
- 修改requirements_versions.txt文件
- 通过命令提示符安装依赖
- 修改webui-user.bat启动参数
- 重新启动程序
技术原理
DirectML是微软提供的跨厂商GPU加速机器学习API,它允许在AMD、Intel和NVIDIA显卡上运行机器学习工作负载。通过添加--use-directml参数,我们告诉PyTorch使用DirectML后端而不是CUDA后端,这使得AMD显卡能够在Windows环境下正常工作。
总结
通过正确配置DirectML支持,大多数AMD显卡用户都可以解决GPU识别问题。关键步骤包括添加torch-directml依赖、修改启动参数以及可能的额外优化参数。对于不同型号的AMD显卡,可能需要调整内存管理参数以获得最佳性能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00