解决stable-diffusion-webui-directml项目中AMD显卡无法识别的问题
问题背景
在使用stable-diffusion-webui-directml项目时,许多AMD显卡用户(特别是RX 7800 XT、RX 6600等型号)遇到了"Torch is not able to use GPU"的错误提示。这个问题主要出现在Windows系统环境下,Linux系统通常可以正常工作。
问题表现
当用户尝试启动stable-diffusion-webui时,控制台会显示以下错误信息:
RuntimeError: Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check
根本原因
这个问题源于PyTorch无法正确识别AMD显卡的DirectML支持。项目需要特定的配置才能让AMD显卡在Windows环境下正常工作。
解决方案
方法一:添加DirectML支持
- 编辑
requirements_versions.txt文件,添加或确保包含以下内容:
torch-directml
- 在项目根目录下打开命令提示符,执行以下命令:
.\venv\scripts\activate
pip install -r requirements.txt
- 如果遇到httpx相关错误,可以尝试:
pip install httpx==0.24.1
- 修改
webui-user.bat文件,在COMMANDLINE_ARGS中添加:
--use-directml
方法二:完整配置示例
对于AMD RX 6650XT等显卡,以下配置已被证实有效:
set COMMANDLINE_ARGS=--use-directml --medvram --no-half --precision full --no-half-vae --opt-sub-quad-attention --opt-split-attention-v1 --autolaunch
方法三:针对特定硬件的优化配置
对于AMD Ryzen 7900X CPU和RX 6700显卡的组合,可以使用以下配置:
set COMMANDLINE_ARGS=--opt-sub-quad-attention --lowvram --disable-nan-check --use-directml
注意事项
-
确保项目文件夹名称为
stable-diffusion-webui-directml,而不是stable-diffusion-webui,这有助于避免混淆。 -
如果遇到DLL加载错误(如"Could not load library cudnn_cnn_infer64_8.dll"),这可能是由于系统环境问题导致的,建议检查系统路径和依赖项。
-
对于新手用户,建议按照以下步骤操作:
- 下载正确的项目版本
- 修改requirements_versions.txt文件
- 通过命令提示符安装依赖
- 修改webui-user.bat启动参数
- 重新启动程序
技术原理
DirectML是微软提供的跨厂商GPU加速机器学习API,它允许在AMD、Intel和NVIDIA显卡上运行机器学习工作负载。通过添加--use-directml参数,我们告诉PyTorch使用DirectML后端而不是CUDA后端,这使得AMD显卡能够在Windows环境下正常工作。
总结
通过正确配置DirectML支持,大多数AMD显卡用户都可以解决GPU识别问题。关键步骤包括添加torch-directml依赖、修改启动参数以及可能的额外优化参数。对于不同型号的AMD显卡,可能需要调整内存管理参数以获得最佳性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00