解决stable-diffusion-webui-directml项目中AMD显卡无法识别的问题
问题背景
在使用stable-diffusion-webui-directml项目时,许多AMD显卡用户(特别是RX 7800 XT、RX 6600等型号)遇到了"Torch is not able to use GPU"的错误提示。这个问题主要出现在Windows系统环境下,Linux系统通常可以正常工作。
问题表现
当用户尝试启动stable-diffusion-webui时,控制台会显示以下错误信息:
RuntimeError: Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check
根本原因
这个问题源于PyTorch无法正确识别AMD显卡的DirectML支持。项目需要特定的配置才能让AMD显卡在Windows环境下正常工作。
解决方案
方法一:添加DirectML支持
- 编辑
requirements_versions.txt文件,添加或确保包含以下内容:
torch-directml
- 在项目根目录下打开命令提示符,执行以下命令:
.\venv\scripts\activate
pip install -r requirements.txt
- 如果遇到httpx相关错误,可以尝试:
pip install httpx==0.24.1
- 修改
webui-user.bat文件,在COMMANDLINE_ARGS中添加:
--use-directml
方法二:完整配置示例
对于AMD RX 6650XT等显卡,以下配置已被证实有效:
set COMMANDLINE_ARGS=--use-directml --medvram --no-half --precision full --no-half-vae --opt-sub-quad-attention --opt-split-attention-v1 --autolaunch
方法三:针对特定硬件的优化配置
对于AMD Ryzen 7900X CPU和RX 6700显卡的组合,可以使用以下配置:
set COMMANDLINE_ARGS=--opt-sub-quad-attention --lowvram --disable-nan-check --use-directml
注意事项
-
确保项目文件夹名称为
stable-diffusion-webui-directml,而不是stable-diffusion-webui,这有助于避免混淆。 -
如果遇到DLL加载错误(如"Could not load library cudnn_cnn_infer64_8.dll"),这可能是由于系统环境问题导致的,建议检查系统路径和依赖项。
-
对于新手用户,建议按照以下步骤操作:
- 下载正确的项目版本
- 修改requirements_versions.txt文件
- 通过命令提示符安装依赖
- 修改webui-user.bat启动参数
- 重新启动程序
技术原理
DirectML是微软提供的跨厂商GPU加速机器学习API,它允许在AMD、Intel和NVIDIA显卡上运行机器学习工作负载。通过添加--use-directml参数,我们告诉PyTorch使用DirectML后端而不是CUDA后端,这使得AMD显卡能够在Windows环境下正常工作。
总结
通过正确配置DirectML支持,大多数AMD显卡用户都可以解决GPU识别问题。关键步骤包括添加torch-directml依赖、修改启动参数以及可能的额外优化参数。对于不同型号的AMD显卡,可能需要调整内存管理参数以获得最佳性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00