ADetailer项目中的PyTorch 2.6兼容性问题分析与解决方案
问题背景
近期ADetailer项目用户反馈在使用NVIDIA 50系列显卡时遇到了模型加载失败的问题。错误日志显示这是由于PyTorch 2.6版本引入的安全机制变更导致的权重文件加载异常。这一问题不仅影响了50系列显卡用户,也波及了其他使用最新PyTorch版本的环境。
技术分析
PyTorch 2.6版本对torch.load函数做出了重要安全改进,将weights_only参数的默认值从False改为True。这一变更旨在防止潜在的恶意代码执行风险,但同时也带来了模型兼容性问题。
错误日志中明确指出了两个关键点:
- 系统检测到
ultralytics.nn.tasks.DetectionModel未被包含在默认的安全全局变量列表中 - 模型文件被标记为"已损坏",但实际上文件本身可能完好无损
解决方案
针对这一问题,我们提供了三种不同级别的解决方案:
1. 临时解决方案(用户级)
对于终端用户,最简单的解决方法是手动设置weights_only=False。这可以通过修改模型加载代码实现,但需要注意此操作会降低安全性,仅建议在完全信任模型来源的情况下使用。
2. 推荐解决方案(开发者级)
更安全的做法是显式地将DetectionModel类添加到安全全局变量列表中。具体实现代码如下:
from ultralytics.nn.tasks import DetectionModel
import torch.serialization
torch.serialization.add_safe_globals([DetectionModel])
这种方法既保持了安全性,又解决了兼容性问题。
3. 系统级解决方案(高级用户)
对于有经验的用户,可以考虑修改PyTorch的序列化模块,将weights_only的默认值改回False。这需要直接编辑PyTorch安装目录下的serialization.py文件,但要注意这会影响所有使用PyTorch的应用程序。
预防措施
为避免类似问题再次发生,建议:
- 在升级PyTorch版本前充分测试关键功能
- 保持ADetailer及其依赖库的及时更新
- 对于生产环境,考虑固定PyTorch版本
总结
PyTorch 2.6的安全改进虽然带来了短期的兼容性挑战,但从长远看有利于深度学习生态的安全发展。通过合理的配置调整,用户可以顺利过渡到新版本。ADetailer团队也在积极跟进这一问题,未来版本将提供更完善的兼容性支持。
对于遇到此问题的用户,建议优先采用第二种解决方案,它既解决了当前问题,又保持了系统的安全性。同时,关注项目的官方更新,以获取更持久的解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00