ScottPlot中多数据记录器自动缩放问题的分析与解决
问题描述
在ScottPlot 5.0.36版本中,当使用两个数据记录器(DataLogger)同时绘制特定数值时,自动缩放功能(AutoScale)会出现异常。具体表现为其中一个数据记录器的部分图形无法完整显示在绘图区域内。这个问题仅在同时使用两个数据记录器时出现,单独使用任一数据记录器时则表现正常。
问题重现
通过以下代码可以重现该问题:
// 创建两个数据记录器
var stockLogger = formsPlot1.Plot.Add.DataLogger();
var averagesLogger = formsPlot1.Plot.Add.DataLogger();
// 准备两组数据
Coordinates[] stockValues = [...];
Coordinates[] averageValues = [...];
// 定时添加数据并刷新
UpdatePlotTimer.Tick += (s, e) =>
{
stockLogger.Add(stockValues[stockIndex++]);
averagesLogger.Add(averageValues[averageIndex++]);
formsPlot1.Plot.Axes.AutoScale();
formsPlot1.Refresh();
};
问题分析
经过深入分析,这个问题主要由以下几个因素共同导致:
-
轴管理冲突:数据记录器默认会尝试管理轴的范围,当多个记录器同时工作时,它们对轴范围的调整可能会相互干扰。
-
数值精度问题:当数据点之间的差异很小时,浮点数的精度限制可能导致自动缩放计算出现偏差。
-
刷新机制:频繁的数据更新和自动缩放请求可能导致绘图系统没有足够时间完成所有计算。
解决方案
针对这个问题,ScottPlot开发团队提供了明确的解决方案:
- 禁用数据记录器的轴管理功能:通过设置
ManageAxisLimits = false,可以防止数据记录器自动调整轴范围。
stockLogger.ManageAxisLimits = false;
averagesLogger.ManageAxisLimits = false;
-
手动控制轴范围:在添加数据后,显式调用
AutoScale()方法来统一控制轴的缩放。 -
使用右侧轴:当需要同时显示两组差异较大的数据时,可以将其中一组数据分配到右侧轴,避免重叠。
stockLogger.Axes.YAxis = formsPlot1.Plot.Axes.Right;
averagesLogger.Axes.YAxis = formsPlot1.Plot.Axes.Right;
最佳实践
基于这个问题的解决经验,我们总结出以下使用ScottPlot数据记录器的最佳实践:
-
当使用多个数据记录器时,建议统一禁用它们的轴管理功能,改为手动控制轴范围。
-
对于实时数据绘图,适当调整刷新频率,避免过于频繁的更新导致性能问题。
-
当两组数据量级差异较大时,考虑使用不同的Y轴(左侧和右侧)来分别显示。
-
对于精度要求高的应用,可以在添加数据前对数值进行适当的舍入处理,避免浮点数精度问题。
结论
ScottPlot作为一款强大的.NET绘图库,在处理实时数据流方面表现出色。通过理解其内部工作机制并遵循最佳实践,开发者可以充分发挥其潜力,创建出稳定、高效的实时数据可视化应用。本次讨论的多数据记录器自动缩放问题及其解决方案,为开发者提供了宝贵的经验参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00