项目推荐:SFCN——从合成数据学习野生环境下的人群计数
2024-06-06 12:54:28作者:鲍丁臣Ursa
项目推荐:SFCN——从合成数据学习野生环境下的人群计数
1、项目介绍
SFCN(Structured Feature Pyramid Network)是源自论文"Learning from Synthetic Data for Crowd Counting in the Wild"的一个官方实现,该论文提出了一个创新的方法,即利用合成数据训练模型进行真实世界中复杂场景的人群计数。通过深度学习,SFCN能够处理高密度人群图像,提供精确的人头计数和密度图预测。
2、项目技术分析
该项目基于Pytorch框架实现,支持Python 2.7,并依赖TensorboardX、torchvision、easydict和pandas等库。SFCN网络结构采用了多层金字塔设计,能捕获不同尺度的特征,从而有效地处理图像中的大小变化。在训练过程中,项目还提供了数据预处理工具,包括图像缩放、关键点位置调整以及密度图和分割图的生成。
3、项目及技术应用场景
SFCN适用于各种高密度人群场景的计数应用,如监控视频分析、公共事件安全管理、交通流量监测等。利用合成数据训练,模型可以更好地适应实际环境中复杂的光照、视角和遮挡情况。
4、项目特点
- 高度可定制:用户可以自由选择预训练模型,包括基于GCC或ImageNet的模型。
- 易于使用:只需运行训练脚本
train.py,并通过Tensorboard查看训练过程。 - 结果可视化:项目提供了详细的损失函数曲线图,以及不同阶段的预测与真实密度图对比,方便理解模型性能。
- 强大的复现性:项目不仅实现了SFCN,还计划复现实验中的一系列经典网络,提供了一个全面的基准测试平台。
如果你正在寻找一种能够处理高密度人群计数问题的高效解决方案,或者对如何利用合成数据训练深度学习模型感兴趣,那么这个SFCN项目绝对值得尝试。请确保正确引用作者的工作,以支持他们持续的研究:
@inproceedings{wang2019learning,
title={Learning from Synthetic Data for Crowd Counting in the Wild},
author={Wang, Qi and Gao, Junyu and Lin, Wei and Yuan, Yuan},
booktitle={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={8198--8207},
year={2019}
}
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218