Hatchet项目性能分析实战指南
2025-06-03 02:39:31作者:裴麒琰
前言
Hatchet是一个强大的性能分析工具,专门用于处理和分析并行应用程序的性能数据。本文将通过一系列实际案例,展示如何使用Hatchet进行各种性能分析任务,从基础操作到高级分析技巧。
数据读取功能
Hatchet支持多种性能数据格式的读取,为分析工作提供了极大的灵活性。
HPCToolkit数据库读取
HPCToolkit是广泛使用的性能分析工具,Hatchet可以直接读取其生成的数据库:
import hatchet as ht
gf = ht.GraphFrame.from_hpctoolkit('kripke')
Caliper数据读取
Caliper是LLNL开发的性能分析工具,Hatchet支持其多种输出格式:
- 原始cali格式:
gf = ht.GraphFrame.from_caliper('lulesh.cali')
- JSON格式:
gf = ht.GraphFrame.from_caliper('lulesh.json')
DOT文件读取
对于gprof或callgrind生成的DOT格式数据:
gf = ht.GraphFrame.from_gprof_dot('callgrind.dot')
基础分析技巧
数据列操作
可以直接对数据列进行数学运算:
gf.dataframe['scaled time'] = (gf.dataframe['time'] / 1e7) - 2
生成扁平化性能报告
通过groupby操作可以生成类似gprof的扁平化性能报告:
grouped = gf.dataframe.groupby('name').sum()
sorted_df = grouped.sort_values(by=['time'], ascending=False)
负载不均衡分析
识别跨进程/线程的负载不均衡:
gf1 = gf.copy()
gf2 = gf.copy()
gf1.drop_index_levels(function=np.mean)
gf2.drop_index_levels(function=np.max)
gf1.dataframe['imbalance'] = gf2.dataframe['time'] / gf1.dataframe['time']
高级分析案例
多运行结果对比
比较不同核心数下的性能差异:
gf1 = ht.GraphFrame.from_caliper('lulesh-1core.json')
gf2 = ht.GraphFrame.from_caliper('lulesh-27cores.json')
gf_diff = gf2 - gf1
特定库分析
分析MPI等特定库的性能:
mpi_gf = gf.filter(lambda x: x['name'].startswith('MPI'))
squashed_mpi_gf = mpi_gf.squash()
扩展性能分析
强扩展性分析
gf_1core = ht.GraphFrame.from_caliper('lulesh-1core.json')
gf_64cores = ht.GraphFrame.from_caliper('lulesh-64cores.json')
gf_strong_scale = gf_1core / gf_64cores
弱扩展性分析
gf_weak_scale = gf_1core / gf_27cores
性能瓶颈识别
通过可视化识别扩展瓶颈:
# 数据准备
datasets = glob.glob('lulesh*.json')
dataframes = []
for dataset in datasets:
gf = ht.GraphFrame.from_caliper(dataset)
gf.drop_index_levels()
# 添加处理逻辑
dataframes.append(gf.dataframe)
# 生成堆叠柱状图
result = pd.concat(dataframes)
pivot_df = result.pivot(index='pes', columns='name', values='time')
pivot_df.plot.bar(stacked=True)
最佳实践建议
- 数据预处理:在分析前先使用drop_index_levels()简化数据结构
- 可视化辅助:结合pandas的绘图功能直观展示分析结果
- 分步验证:复杂分析可分步进行,验证中间结果
- 数据过滤:使用filter()聚焦关键代码区域
- 结果对比:善用减法运算比较不同配置的性能差异
结语
Hatchet提供了丰富而灵活的性能分析功能,从基础的数据操作到高级的扩展性分析,能够满足不同层次的性能分析需求。通过本文介绍的各种技巧和案例,读者可以快速掌握Hatchet的核心功能,并将其应用到实际的性能优化工作中。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
165
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
408
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71

无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
14
1