Hatchet项目性能分析实战指南
2025-06-03 19:14:10作者:裴麒琰
前言
Hatchet是一个强大的性能分析工具,专门用于处理和分析并行应用程序的性能数据。本文将通过一系列实际案例,展示如何使用Hatchet进行各种性能分析任务,从基础操作到高级分析技巧。
数据读取功能
Hatchet支持多种性能数据格式的读取,为分析工作提供了极大的灵活性。
HPCToolkit数据库读取
HPCToolkit是广泛使用的性能分析工具,Hatchet可以直接读取其生成的数据库:
import hatchet as ht
gf = ht.GraphFrame.from_hpctoolkit('kripke')
Caliper数据读取
Caliper是LLNL开发的性能分析工具,Hatchet支持其多种输出格式:
- 原始cali格式:
gf = ht.GraphFrame.from_caliper('lulesh.cali')
- JSON格式:
gf = ht.GraphFrame.from_caliper('lulesh.json')
DOT文件读取
对于gprof或callgrind生成的DOT格式数据:
gf = ht.GraphFrame.from_gprof_dot('callgrind.dot')
基础分析技巧
数据列操作
可以直接对数据列进行数学运算:
gf.dataframe['scaled time'] = (gf.dataframe['time'] / 1e7) - 2
生成扁平化性能报告
通过groupby操作可以生成类似gprof的扁平化性能报告:
grouped = gf.dataframe.groupby('name').sum()
sorted_df = grouped.sort_values(by=['time'], ascending=False)
负载不均衡分析
识别跨进程/线程的负载不均衡:
gf1 = gf.copy()
gf2 = gf.copy()
gf1.drop_index_levels(function=np.mean)
gf2.drop_index_levels(function=np.max)
gf1.dataframe['imbalance'] = gf2.dataframe['time'] / gf1.dataframe['time']
高级分析案例
多运行结果对比
比较不同核心数下的性能差异:
gf1 = ht.GraphFrame.from_caliper('lulesh-1core.json')
gf2 = ht.GraphFrame.from_caliper('lulesh-27cores.json')
gf_diff = gf2 - gf1
特定库分析
分析MPI等特定库的性能:
mpi_gf = gf.filter(lambda x: x['name'].startswith('MPI'))
squashed_mpi_gf = mpi_gf.squash()
扩展性能分析
强扩展性分析
gf_1core = ht.GraphFrame.from_caliper('lulesh-1core.json')
gf_64cores = ht.GraphFrame.from_caliper('lulesh-64cores.json')
gf_strong_scale = gf_1core / gf_64cores
弱扩展性分析
gf_weak_scale = gf_1core / gf_27cores
性能瓶颈识别
通过可视化识别扩展瓶颈:
# 数据准备
datasets = glob.glob('lulesh*.json')
dataframes = []
for dataset in datasets:
gf = ht.GraphFrame.from_caliper(dataset)
gf.drop_index_levels()
# 添加处理逻辑
dataframes.append(gf.dataframe)
# 生成堆叠柱状图
result = pd.concat(dataframes)
pivot_df = result.pivot(index='pes', columns='name', values='time')
pivot_df.plot.bar(stacked=True)
最佳实践建议
- 数据预处理:在分析前先使用drop_index_levels()简化数据结构
- 可视化辅助:结合pandas的绘图功能直观展示分析结果
- 分步验证:复杂分析可分步进行,验证中间结果
- 数据过滤:使用filter()聚焦关键代码区域
- 结果对比:善用减法运算比较不同配置的性能差异
结语
Hatchet提供了丰富而灵活的性能分析功能,从基础的数据操作到高级的扩展性分析,能够满足不同层次的性能分析需求。通过本文介绍的各种技巧和案例,读者可以快速掌握Hatchet的核心功能,并将其应用到实际的性能优化工作中。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328