OpenMS 开源项目教程
1. 项目介绍
OpenMS 是一个开源的 C++ 库,专门用于液相色谱-质谱(LC-MS)数据的管理和分析。它提供了一个基础设施,用于快速开发与质谱相关的软件。OpenMS 是免费软件,基于三条款 BSD 许可证发布,支持 Windows、macOS 和 Linux 操作系统。它包含了大量的预构建工具,适用于蛋白质组学和代谢组学数据分析(TOPP 工具),以及强大的 1D、2D 和 3D 可视化工具(TOPPView)。
OpenMS 支持多种定量协议,包括无标记定量、SILAC、iTRAQ、TMT、SRM、SWATH 等。它还提供了内置算法用于从头鉴定和数据库搜索,并支持与其他顶级工具(如 X!Tandem、Mascot、Comet 等)的集成。通过 TOPP 工具概念和统一的参数处理(CTD 方案),OpenMS 可以轻松集成到工作流引擎中,如 KNIME、Galaxy、WS-Pgrade 和 TOPPAS。
2. 项目快速启动
2.1 安装 OpenMS
首先,克隆 OpenMS 的 GitHub 仓库:
git clone https://github.com/OpenMS/OpenMS.git
cd OpenMS
2.2 构建 OpenMS
使用 CMake 构建 OpenMS:
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
2.3 运行示例
构建完成后,可以运行一个简单的示例:
./bin/ExampleTool
3. 应用案例和最佳实践
3.1 蛋白质组学数据分析
OpenMS 提供了丰富的工具用于蛋白质组学数据的分析,包括蛋白质鉴定、定量和可视化。以下是一个简单的蛋白质鉴定流程:
./bin/FeatureFinderMetabo -in input.mzML -out output.featureXML
./bin/IDMapper -in output.featureXML -id input.idXML -out output.idmapped.featureXML
3.2 代谢组学数据分析
对于代谢组学数据,OpenMS 提供了专门的工具进行代谢物的鉴定和定量。以下是一个简单的代谢物鉴定流程:
./bin/FeatureFinderMetabo -in input.mzML -out output.featureXML
./bin/MetaboliteAdductDecharger -in output.featureXML -out output.decharged.featureXML
4. 典型生态项目
4.1 KNIME
KNIME 是一个开源的数据分析平台,支持与 OpenMS 的集成。通过 KNIME 的 OpenMS 节点,用户可以轻松构建复杂的数据分析工作流。
4.2 Galaxy
Galaxy 是一个开源的生物信息学平台,也支持与 OpenMS 的集成。用户可以通过 Galaxy 的 OpenMS 工具集进行数据分析和可视化。
4.3 pyOpenMS
pyOpenMS 是 OpenMS 的 Python 绑定,允许用户使用 Python 进行快速算法开发。通过 pyOpenMS,用户可以访问 OpenMS 的大部分 API,并将其集成到 Python 脚本中。
from pyopenms import *
exp = MSExperiment()
MzMLFile().load("input.mzML", exp)
for spectrum in exp:
print(spectrum.getRT(), spectrum.getMSLevel())
通过以上模块,用户可以快速了解和使用 OpenMS 进行质谱数据分析。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00