Fairlearn项目中MetricFrame的bootstrap采样问题分析与解决方案
背景介绍
在机器学习公平性评估中,Fairlearn是一个广泛使用的Python库,它提供了评估和缓解算法偏差的工具。其中MetricFrame类是一个核心组件,用于计算和比较不同敏感特征组之间的指标。当启用bootstrap采样功能时,可能会遇到一个关键的技术问题。
问题描述
当使用MetricFrame进行bootstrap采样时(即设置n_boot和ci_quantiles参数),如果采样过程中某些敏感特征组的值未被包含在样本中,会导致程序崩溃。这种情况特别容易发生在数据集中某些敏感特征组占比较小的"少数群体"场景中。
技术分析
问题的根源在于bootstrap采样过程的随机性。标准的bootstrap方法是对整个数据集进行有放回的随机采样,而不考虑敏感特征组的分布。当某些敏感特征组在原始数据中占比较小时,采样过程中可能会完全遗漏这些组。
从统计学角度看,这种遗漏会导致两个问题:
- 程序实现层面:当尝试计算遗漏组的指标时,由于没有数据点,会导致索引不匹配的错误
- 统计意义层面:遗漏组的信息完全丢失,影响置信区间的准确性
解决方案探讨
经过项目维护者的深入讨论,提出了两种可能的解决方案:
-
NaN填充方案:当bootstrap样本中缺少某个敏感特征组时,返回
np.nan值,并使用np.nanquantile计算置信区间。这种方法保持了bootstrap的统计特性,且向后兼容随机种子设置。 -
分层采样方案:按照敏感特征和控制特征的联合值进行分层采样。这种方法能保证每个组都有代表,但可能低估整体方差,特别是在某些极端情况下(如每个数据点属于不同组时)。
最终决策
项目团队最终选择了第一种方案(NaN填充)作为默认实现,原因包括:
- 保持bootstrap的统计特性
- 不引入额外的偏差
- 保持随机种子的可重复性
- 实现简单且直观
第二种方案(分层采样)可能作为可选参数在未来版本中提供,供有特定需求的用户使用。
技术实现要点
在实际实现中,需要注意以下技术细节:
- 使用
np.nan表示缺失组 - 采用
np.nanquantile计算置信区间 - 保持索引一致性检查
- 确保随机种子的可重复性
对用户的影响
这一改进使得:
- 用户在小样本或不平衡数据集上使用bootstrap时不会遇到程序崩溃
- 置信区间的计算更加健壮
- 保持了结果的可重复性
- 对于确实缺少数据的组,通过NaN值明确标识,而不是隐藏问题
总结
Fairlearn通过这一改进增强了MetricFrame在bootstrap采样场景下的鲁棒性,特别是在处理不平衡数据集时。这一变化体现了项目团队对统计严谨性和用户体验的双重关注,为机器学习公平性评估提供了更可靠的工具。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00