Fairlearn与PyTorch模型结合使用的技术探索
2025-07-05 04:55:39作者:龚格成
背景介绍
Fairlearn是一个用于评估和改善机器学习模型公平性的Python工具包。虽然它原生支持scikit-learn风格的模型接口,但许多开发者希望将其与PyTorch深度学习框架结合使用。本文将探讨如何通过skorch库实现这一目标,并分享实际应用中的技术细节。
技术挑战
Fairlearn设计时主要考虑了scikit-learn风格的API,而PyTorch模型通常不直接支持sample_weight参数,这给公平性约束的实现带来了挑战。主要问题包括:
- PyTorch模型默认不处理样本权重
- 训练和测试阶段需要不同的权重处理逻辑
- 损失函数需要特殊处理以支持公平性约束
解决方案实现
自定义PyTorch模型
通过扩展nn.Module类,我们可以创建一个支持样本权重的自定义模型:
class FairlearnMLP(nn.Module):
def __init__(self, num_classes, num_features, num_layers=4, layer_width=128):
super().__init__()
layers = []
for i in range(num_layers - 1):
layers.append(nn.Linear(num_features if i == 0 else layer_width, layer_width))
layers.append(nn.ReLU())
layers.append(nn.Linear(layer_width, num_classes))
layers.append(nn.Sigmoid())
self.layers = nn.Sequential(*layers)
self.train_sample_weight = None
self.test_sample_weight = None
self.training_samples = training_samples
self.testing_samples = testing_samples
def forward(self, x, *, sample_weight=None):
if sample_weight is not None:
if len(sample_weight.values) == self.training_samples:
self.train_sample_weight = sample_weight.values
elif len(sample_weight.values) == self.testing_samples:
self.test_sample_weight = sample_weight.values
return self.layers(x)
自定义skorch分类器
通过扩展NeuralNetBinaryClassifier,我们可以实现样本权重在损失函数中的正确应用:
class FairClassifier(NeuralNetBinaryClassifier):
def predict(self, X):
predictions = self.predict_proba(X)
return (predictions > self.threshold).astype(int)
def get_loss(self, y_pred, y_true, X=None, training=False):
y_true = torch.tensor(y_true, dtype=torch.double, device=self.device)
if hasattr(self.module_, 'train_sample_weight') and self.module_.train_sample_weight is not None:
sample_weight = self.module_.train_sample_weight
elif hasattr(self.module_, 'test_sample_weight') and self.module_.test_sample_weight is not None:
sample_weight = self.module_.test_sample_weight
else:
sample_weight = None
if sample_weight is not None:
loss = self.criterion(y_pred, y_true)
loss = loss * torch.tensor(sample_weight, dtype=torch.double)
return loss.mean()
return self.criterion_(y_pred, y_true).mean()
公平性约束的实现
在Fairlearn中,EqualizedOdds矩约束是最接近以下数学表达式的实现:
EqualizedOdds约束确保模型在不同敏感属性组上的真正例率和假正例率差异不超过阈值r。对于二分类问题,这是最合适的公平性约束之一。
实践建议
- 批量大小选择:建议使用全批量训练以确保样本权重正确应用
- 数据类型一致性:确保权重张量与模型输出使用相同的数据类型
- 训练测试分离:明确区分训练和测试阶段的样本权重处理
- 公平性评估:定期使用Fairlearn的指标评估模型公平性
总结
虽然Fairlearn与PyTorch的直接集成需要额外的工作,但通过skorch和自定义模型类可以实现有效的结合。这种方法为深度学习模型提供了公平性保障,同时保持了PyTorch的灵活性和性能优势。开发者可以根据具体需求调整模型结构和公平性约束,构建既准确又公平的机器学习系统。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
46
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44