LLMOps with Prompt Flow:简化大语言模型应用开发与部署
2024-10-10 10:36:42作者:段琳惟
项目介绍
在人工智能和大语言模型(LLMs)快速发展的今天,LLMOps(Large Language Model Operations)已成为高效管理和部署LLM应用的关键。随着LLM应用需求的不断增长,企业需要一个统一且高效的流程来管理其从开发到部署的整个生命周期。LLMOps with Prompt Flow 正是为此而生,它不仅是一个支持Azure AI Studio和Azure Machine Learning的模板,还提供了丰富的功能来支持从本地实验到生产部署的全流程管理。
项目技术分析
LLMOps with Prompt Flow 支持多种类型的流程,包括Python类流程、函数流程和YAML流程。它不仅支持本地执行,还可以无缝迁移到Azure云端进行实验、评估和部署。此外,项目还支持Github、Azure DevOps和Jenkins的CI/CD编排,确保开发流程的自动化和高效性。通过promptflow-evals包,项目还支持纯Python的评估,进一步增强了其灵活性和实用性。
项目及技术应用场景
LLMOps with Prompt Flow 适用于以下场景:
- 大语言模型应用开发:无论是简单的文本生成还是复杂的对话系统,项目都能提供从实验到部署的全流程支持。
- Prompt工程:通过丰富的实验和评估功能,帮助开发者快速找到最优的Prompt配置。
- CI/CD自动化:支持多种CI/CD工具,确保开发流程的自动化和高效性。
- 多环境部署:无论是本地开发还是云端部署,项目都能提供无缝的迁移体验。
项目特点
- 多平台支持:支持Azure AI Studio和Azure Machine Learning,满足不同开发环境的需求。
- 多类型流程支持:无论是Python类、函数还是YAML流程,项目都能自动检测并执行。
- CI/CD编排:支持Github、Azure DevOps和Jenkins,确保开发流程的自动化和高效性。
- 实验与评估:提供丰富的实验和评估功能,帮助开发者快速找到最优配置。
- 部署灵活性:支持多种部署目标,包括Kubernetes、Azure Web Apps和AML/AI Studio托管计算。
- 详细报告生成:生成详细的报告,帮助开发者做出数据驱动的决策。
结语
LLMOps with Prompt Flow 不仅是一个强大的工具,更是一个完整的解决方案,帮助开发者简化大语言模型应用的开发与部署流程。无论你是数据科学家、工程师还是开发者,这个项目都能为你提供所需的支持,让你的LLM应用开发更加高效和便捷。赶快尝试吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218