首页
/ Prompt-Diffusion 项目使用教程

Prompt-Diffusion 项目使用教程

2024-09-25 00:24:38作者:戚魁泉Nursing

1. 项目介绍

Prompt-Diffusion 是一个用于在扩散模型中实现上下文学习的框架。该项目由 Zhendong Wang 等人开发,旨在通过提供任务特定的示例图像和文本指导,使模型能够自动理解并执行新查询图像上的相同任务。该框架结合了视觉语言提示和扩散模型,能够在多种视觉语言任务上进行训练,并展示出高质量的上下文生成能力。

2. 项目快速启动

2.1 安装依赖

首先,确保你已经安装了必要的依赖库。你可以使用以下命令安装依赖:

pip install torch diffusers

2.2 快速尝试

以下是一个快速尝试的代码示例,展示了如何使用 Prompt-Diffusion 进行图像生成:

import torch
from diffusers import DDIMScheduler, UniPCMultistepScheduler
from diffusers.utils import load_image
from promptdiffusioncontrolnet import PromptDiffusionControlNetModel
from pipeline_prompt_diffusion import PromptDiffusionPipeline
from PIL import ImageOps

# 加载示例图像
image_a = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house_line.png?raw=true"))
image_b = load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house.png?raw=true")
query = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/new_01.png?raw=true"))

# 加载 Prompt Diffusion ControlNet 模型
controlnet = PromptDiffusionControlNetModel.from_pretrained("zhendongw/prompt-diffusion-diffusers", subfolder="controlnet", torch_dtype=torch.float16)
pipe = PromptDiffusionPipeline.from_pretrained("zhendongw/prompt-diffusion-diffusers", controlnet=controlnet).to(torch.float16).to('cuda')

# 加速扩散过程
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

# 生成图像
generator = torch.manual_seed(2023)
image = pipe("a tortoise", num_inference_steps=50, generator=generator, image_pair=[image_a, image_b], image=query).images[0]
image.save('test.png')

3. 应用案例和最佳实践

3.1 多任务学习

Prompt-Diffusion 能够在多种视觉语言任务上进行训练,例如从图像生成深度图、从涂鸦生成图像等。通过提供任务特定的示例图像和文本指导,模型能够自动理解并执行新查询图像上的相同任务。

3.2 图像编辑能力

该模型展示了强大的文本引导图像编辑能力。用户可以通过提供文本描述来指导模型对图像进行编辑,例如将图像中的物体替换为其他物体,或者改变图像的风格。

4. 典型生态项目

4.1 Hugging Face Diffusers

Prompt-Diffusion 支持通过 Hugging Face 的 Diffusers 包进行使用。用户可以通过 Diffusers 包快速加载和使用 Prompt-Diffusion 模型,简化了模型的部署和使用流程。

4.2 Gradio 演示

项目团队正在准备基于 Gradio 的演示,预计将在不久后发布。Gradio 演示将提供一个用户友好的界面,使用户能够通过简单的操作体验 Prompt-Diffusion 的功能。


通过以上教程,你可以快速上手使用 Prompt-Diffusion 项目,并了解其在多任务学习和图像编辑方面的应用。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
180
264
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60