Prompt-Diffusion 项目使用教程
2024-09-25 04:52:20作者:戚魁泉Nursing
1. 项目介绍
Prompt-Diffusion 是一个用于在扩散模型中实现上下文学习的框架。该项目由 Zhendong Wang 等人开发,旨在通过提供任务特定的示例图像和文本指导,使模型能够自动理解并执行新查询图像上的相同任务。该框架结合了视觉语言提示和扩散模型,能够在多种视觉语言任务上进行训练,并展示出高质量的上下文生成能力。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了必要的依赖库。你可以使用以下命令安装依赖:
pip install torch diffusers
2.2 快速尝试
以下是一个快速尝试的代码示例,展示了如何使用 Prompt-Diffusion 进行图像生成:
import torch
from diffusers import DDIMScheduler, UniPCMultistepScheduler
from diffusers.utils import load_image
from promptdiffusioncontrolnet import PromptDiffusionControlNetModel
from pipeline_prompt_diffusion import PromptDiffusionPipeline
from PIL import ImageOps
# 加载示例图像
image_a = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house_line.png?raw=true"))
image_b = load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house.png?raw=true")
query = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/new_01.png?raw=true"))
# 加载 Prompt Diffusion ControlNet 模型
controlnet = PromptDiffusionControlNetModel.from_pretrained("zhendongw/prompt-diffusion-diffusers", subfolder="controlnet", torch_dtype=torch.float16)
pipe = PromptDiffusionPipeline.from_pretrained("zhendongw/prompt-diffusion-diffusers", controlnet=controlnet).to(torch.float16).to('cuda')
# 加速扩散过程
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
# 生成图像
generator = torch.manual_seed(2023)
image = pipe("a tortoise", num_inference_steps=50, generator=generator, image_pair=[image_a, image_b], image=query).images[0]
image.save('test.png')
3. 应用案例和最佳实践
3.1 多任务学习
Prompt-Diffusion 能够在多种视觉语言任务上进行训练,例如从图像生成深度图、从涂鸦生成图像等。通过提供任务特定的示例图像和文本指导,模型能够自动理解并执行新查询图像上的相同任务。
3.2 图像编辑能力
该模型展示了强大的文本引导图像编辑能力。用户可以通过提供文本描述来指导模型对图像进行编辑,例如将图像中的物体替换为其他物体,或者改变图像的风格。
4. 典型生态项目
4.1 Hugging Face Diffusers
Prompt-Diffusion 支持通过 Hugging Face 的 Diffusers 包进行使用。用户可以通过 Diffusers 包快速加载和使用 Prompt-Diffusion 模型,简化了模型的部署和使用流程。
4.2 Gradio 演示
项目团队正在准备基于 Gradio 的演示,预计将在不久后发布。Gradio 演示将提供一个用户友好的界面,使用户能够通过简单的操作体验 Prompt-Diffusion 的功能。
通过以上教程,你可以快速上手使用 Prompt-Diffusion 项目,并了解其在多任务学习和图像编辑方面的应用。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5