Prompt-Diffusion 项目使用教程
2024-09-25 13:06:34作者:戚魁泉Nursing
1. 项目介绍
Prompt-Diffusion 是一个用于在扩散模型中实现上下文学习的框架。该项目由 Zhendong Wang 等人开发,旨在通过提供任务特定的示例图像和文本指导,使模型能够自动理解并执行新查询图像上的相同任务。该框架结合了视觉语言提示和扩散模型,能够在多种视觉语言任务上进行训练,并展示出高质量的上下文生成能力。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了必要的依赖库。你可以使用以下命令安装依赖:
pip install torch diffusers
2.2 快速尝试
以下是一个快速尝试的代码示例,展示了如何使用 Prompt-Diffusion 进行图像生成:
import torch
from diffusers import DDIMScheduler, UniPCMultistepScheduler
from diffusers.utils import load_image
from promptdiffusioncontrolnet import PromptDiffusionControlNetModel
from pipeline_prompt_diffusion import PromptDiffusionPipeline
from PIL import ImageOps
# 加载示例图像
image_a = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house_line.png?raw=true"))
image_b = load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house.png?raw=true")
query = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/new_01.png?raw=true"))
# 加载 Prompt Diffusion ControlNet 模型
controlnet = PromptDiffusionControlNetModel.from_pretrained("zhendongw/prompt-diffusion-diffusers", subfolder="controlnet", torch_dtype=torch.float16)
pipe = PromptDiffusionPipeline.from_pretrained("zhendongw/prompt-diffusion-diffusers", controlnet=controlnet).to(torch.float16).to('cuda')
# 加速扩散过程
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
# 生成图像
generator = torch.manual_seed(2023)
image = pipe("a tortoise", num_inference_steps=50, generator=generator, image_pair=[image_a, image_b], image=query).images[0]
image.save('test.png')
3. 应用案例和最佳实践
3.1 多任务学习
Prompt-Diffusion 能够在多种视觉语言任务上进行训练,例如从图像生成深度图、从涂鸦生成图像等。通过提供任务特定的示例图像和文本指导,模型能够自动理解并执行新查询图像上的相同任务。
3.2 图像编辑能力
该模型展示了强大的文本引导图像编辑能力。用户可以通过提供文本描述来指导模型对图像进行编辑,例如将图像中的物体替换为其他物体,或者改变图像的风格。
4. 典型生态项目
4.1 Hugging Face Diffusers
Prompt-Diffusion 支持通过 Hugging Face 的 Diffusers 包进行使用。用户可以通过 Diffusers 包快速加载和使用 Prompt-Diffusion 模型,简化了模型的部署和使用流程。
4.2 Gradio 演示
项目团队正在准备基于 Gradio 的演示,预计将在不久后发布。Gradio 演示将提供一个用户友好的界面,使用户能够通过简单的操作体验 Prompt-Diffusion 的功能。
通过以上教程,你可以快速上手使用 Prompt-Diffusion 项目,并了解其在多任务学习和图像编辑方面的应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1