Loki4j Logback 应用程序附加工具安装与使用教程
2024-08-10 13:26:43作者:薛曦旖Francesca
本教程将指导您如何安装并使用 Loki4j Logback Appender,这是一个用于将Java应用的日志推送到Grafana Loki的快速轻量级Logback插件。以下是主要内容:
1. 项目目录结构及介绍
在克隆或下载 Loki4j Logback Appender 项目后,典型的目录结构如下:
├── build.gradle // Gradle构建脚本
├── docs // 文档相关文件
├── loki-client // 与Loki通信的相关代码
├── loki-logback-appender // 主要的Logback实现
├── loki-protobuf // Protobuf相关的定义
├── testkit // 测试工具
├── .gitignore // Git忽略文件列表
├── CONTRIBUTING.md // 贡献指南
├── LICENSE // 许可证文件
├── NOTICE.txt // 注意事项
└── README.md // 项目README
其中,build.gradle 是项目依赖管理文件,docs 存放文档,而其他子目录如 loki-client 等则是项目的源码和库。
2. 项目的启动文件介绍
由于 Loki4j Logback Appender 是一个Logback插件,没有特定的启动文件。它的使用是通过集成到您的应用程序中,通过修改Logback配置文件(通常是 logback.xml)来添加Loki日志推送功能。您不需要独立启动这个项目,而是将其作为你的应用的一部分进行编译和部署。
3. 项目的配置文件介绍
3.1 添加依赖
首先,你需要在你的Maven或者Gradle项目中添加loki-logback-appender依赖。例如,在Maven的pom.xml中:
<dependency>
<groupId>com.github.loki4j</groupId>
<artifactId>loki-logback-appender</artifactId>
<version>1.5.2</version>
</dependency>
在Gradle的build.gradle文件中:
implementation 'com.github.loki4j:loki-logback-appender:1.5.2'
3.2 配置Logback XML
接下来,更新您的 logback.xml 文件以添加Loki Appender配置。以下是一个基本示例:
<configuration>
<!-- 其他配置... -->
<appender name="LOKI" class="com.github.loki4j.logback.Loki4jAppender">
<http>
<url>http://localhost:3100/loki/api/v1/push</url>
</http>
<format>
<label>
<pattern>app=my-app host=$[HOSTNAME]</pattern>
</label>
<message>
<!-- 可选模式: 默认文本布局 -->
<pattern>%-5level [% 5($[HOSTNAME])] % 10thread %logger[20] | %msg %ex</pattern>
</message>
<!-- 或者选择JSON布局 -->
<message class="com.github.loki4j.logback.JsonLayout" />
</format>
</appender>
<root level="DEBUG">
<appender-ref ref="LOKI" />
</root>
<!-- 其他配置... -->
</configuration>
在上述配置中:
<url>标签指定了Loki服务器的位置。<label>定义了日志标签,便于在Loki中组织和查询。<message>中的模式定义了日志消息的格式,可以是文本或JSON。<root>设置日志级别,并将Loki Appender附加到所有日志记录上。
完成这些步骤后,重新启动你的应用程序,它将开始将日志发送至配置的Loki服务器。
更多高级配置选项和详细的日志格式说明,请参考项目仓库中的 README 和 官方文档。如有疑问,请查阅这些资源或在项目问题反馈区提交问题。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.27 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
402
仓颉编程语言运行时与标准库。
Cangjie
130
415