Visual-RFT项目中的Pets37数据集复现问题分析与解决方案
2025-07-10 12:41:54作者:昌雅子Ethen
在基于视觉的强化微调(Visual-RFT)研究领域,复现论文结果是一个常见但具有挑战性的任务。本文针对Visual-RFT项目中Pets37数据集的复现问题进行了深入分析,并提供了有效的解决方案。
问题背景
研究人员在复现Visual-RFT项目中Pets37数据集(4-shot设置)的实验结果时,发现实际复现的准确率(65.28%)与论文报告结果存在显著差异。这一问题在开源社区中具有典型性,反映了提示工程(prompt engineering)在视觉语言模型中的重要性。
技术分析
原始实验使用了标准的提示模板,但未能达到预期效果。经过深入排查,发现问题核心在于提示词(prompt)的设计不够精确。具体表现为:
- 原始提示缺乏明确的输出格式规范
 - 思考过程和最终答案的区分不够清晰
 - 对模型输出的结构化要求不够严格
 
解决方案
通过优化提示工程,采用以下改进方案:
question = (
    "This is an image containing a pet. Please identify the species of the pet based on the image.\n"
    "Output the thinking process in <think> </think> and final answer in <answer> </answer> tags."
    "The output answer format should be as follows:\n"
    "<think> ... </think> <answer>species name</answer>\n"
    "Please strictly follow the format."
)
这一改进方案具有以下技术优势:
- 明确划分思考过程和最终答案区域
 - 强制要求结构化输出格式
 - 提供清晰的示例模板
 - 强调格式遵循的重要性
 
效果验证
采用优化后的提示方案后,模型在Pets37数据集上的准确率从65.28%提升至85.39%,显著改善了模型性能。这一改进验证了提示工程在视觉语言模型中的关键作用。
技术启示
这一案例为视觉语言模型的研究提供了重要启示:
- 提示设计需要精确控制输出格式
 - 结构化输出能显著提升模型性能
 - 在复现研究结果时,提示细节可能成为关键变量
 - 开源社区的协作能有效解决技术难题
 
结论
在Visual-RFT项目中,通过精细化的提示工程成功解决了Pets37数据集的复现问题。这一经验不仅适用于当前项目,也为其他视觉语言模型的研究提供了有价值的参考。未来工作中,建议将此类最佳实践纳入项目文档,以帮助更多研究者避免类似问题。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445