Visual-RFT项目中的Pets37数据集复现问题分析与解决方案
2025-07-10 15:01:48作者:昌雅子Ethen
在基于视觉的强化微调(Visual-RFT)研究领域,复现论文结果是一个常见但具有挑战性的任务。本文针对Visual-RFT项目中Pets37数据集的复现问题进行了深入分析,并提供了有效的解决方案。
问题背景
研究人员在复现Visual-RFT项目中Pets37数据集(4-shot设置)的实验结果时,发现实际复现的准确率(65.28%)与论文报告结果存在显著差异。这一问题在开源社区中具有典型性,反映了提示工程(prompt engineering)在视觉语言模型中的重要性。
技术分析
原始实验使用了标准的提示模板,但未能达到预期效果。经过深入排查,发现问题核心在于提示词(prompt)的设计不够精确。具体表现为:
- 原始提示缺乏明确的输出格式规范
- 思考过程和最终答案的区分不够清晰
- 对模型输出的结构化要求不够严格
解决方案
通过优化提示工程,采用以下改进方案:
question = (
"This is an image containing a pet. Please identify the species of the pet based on the image.\n"
"Output the thinking process in <think> </think> and final answer in <answer> </answer> tags."
"The output answer format should be as follows:\n"
"<think> ... </think> <answer>species name</answer>\n"
"Please strictly follow the format."
)
这一改进方案具有以下技术优势:
- 明确划分思考过程和最终答案区域
- 强制要求结构化输出格式
- 提供清晰的示例模板
- 强调格式遵循的重要性
效果验证
采用优化后的提示方案后,模型在Pets37数据集上的准确率从65.28%提升至85.39%,显著改善了模型性能。这一改进验证了提示工程在视觉语言模型中的关键作用。
技术启示
这一案例为视觉语言模型的研究提供了重要启示:
- 提示设计需要精确控制输出格式
- 结构化输出能显著提升模型性能
- 在复现研究结果时,提示细节可能成为关键变量
- 开源社区的协作能有效解决技术难题
结论
在Visual-RFT项目中,通过精细化的提示工程成功解决了Pets37数据集的复现问题。这一经验不仅适用于当前项目,也为其他视觉语言模型的研究提供了有价值的参考。未来工作中,建议将此类最佳实践纳入项目文档,以帮助更多研究者避免类似问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1