Visual-RFT项目中的Pets37数据集复现问题分析与解决方案
2025-07-10 16:47:27作者:昌雅子Ethen
在基于视觉的强化微调(Visual-RFT)研究领域,复现论文结果是一个常见但具有挑战性的任务。本文针对Visual-RFT项目中Pets37数据集的复现问题进行了深入分析,并提供了有效的解决方案。
问题背景
研究人员在复现Visual-RFT项目中Pets37数据集(4-shot设置)的实验结果时,发现实际复现的准确率(65.28%)与论文报告结果存在显著差异。这一问题在开源社区中具有典型性,反映了提示工程(prompt engineering)在视觉语言模型中的重要性。
技术分析
原始实验使用了标准的提示模板,但未能达到预期效果。经过深入排查,发现问题核心在于提示词(prompt)的设计不够精确。具体表现为:
- 原始提示缺乏明确的输出格式规范
- 思考过程和最终答案的区分不够清晰
- 对模型输出的结构化要求不够严格
解决方案
通过优化提示工程,采用以下改进方案:
question = (
"This is an image containing a pet. Please identify the species of the pet based on the image.\n"
"Output the thinking process in <think> </think> and final answer in <answer> </answer> tags."
"The output answer format should be as follows:\n"
"<think> ... </think> <answer>species name</answer>\n"
"Please strictly follow the format."
)
这一改进方案具有以下技术优势:
- 明确划分思考过程和最终答案区域
- 强制要求结构化输出格式
- 提供清晰的示例模板
- 强调格式遵循的重要性
效果验证
采用优化后的提示方案后,模型在Pets37数据集上的准确率从65.28%提升至85.39%,显著改善了模型性能。这一改进验证了提示工程在视觉语言模型中的关键作用。
技术启示
这一案例为视觉语言模型的研究提供了重要启示:
- 提示设计需要精确控制输出格式
- 结构化输出能显著提升模型性能
- 在复现研究结果时,提示细节可能成为关键变量
- 开源社区的协作能有效解决技术难题
结论
在Visual-RFT项目中,通过精细化的提示工程成功解决了Pets37数据集的复现问题。这一经验不仅适用于当前项目,也为其他视觉语言模型的研究提供了有价值的参考。未来工作中,建议将此类最佳实践纳入项目文档,以帮助更多研究者避免类似问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
200
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
280
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
381
3.5 K
暂无简介
Dart
625
141
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210